Legal information

Warning notice system
This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

⚠️ DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

⚠️ WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

⚠️ CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

⚠️ NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

⚠️ WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.
Table of contents

1 **Introduction** ... 13
 1.1 General information.. 13
 1.2 Lubricants.. 14

2 **Safety instructions** .. 15
 2.1 Security notes... 15
 2.2 The five safety rules... 15
 2.3 General information.. 15
 2.4 General warnings and symbols.. 17
 2.5 Special types of danger and personal protective equipment.. 18
 2.6 Intended use.. 20

3 **Description** ... 23
 3.1 General description... 23
 3.2 Output shaft versions.. 24
 3.3 Housing... 25
 3.4 Oil supply to the gear unit.. 30
 3.4.1 Splash lubrication.. 30
 3.4.2 Pressure lubrication.. 31
 3.4.2.1 Pump.. 33
 3.4.2.2 Oil filter.. 33
 3.5 Bearing arrangement of the shafts... 33
 3.6 Shaft seal.. 33
 3.6.1 Rotary shaft sealing rings.. 34
 3.6.2 Labyrinth seals.. 34
 3.6.3 Taconite seal.. 35
 3.6.4 Tacolab seal.. 37
 3.7 Backstop... 39
 3.8 Torque limiting backstop (special version).. 40
 3.9 Cooling... 42
 3.9.1 Fan... 43
 3.9.2 Cooling coil.. 44
 3.9.3 Mounted oil supply system.. 46
 3.9.3.1 Mounted oil supply system with air-oil cooler... 46
 3.9.3.2 Mounted oil supply system with water-oil cooler.. 48
 3.9.3.3 Pump.. 50
 3.9.3.4 Oil filter.. 50
 3.9.4 Separate oil supply system.. 50
Table of contents

3.10 Couplings... 51
3.11 Shrink disk.. 51
3.12 Heating.. 52
3.13 Oil level indicator... 53
3.14 Oil level monitoring system.. 54
3.15 Oil temperature monitoring.. 55
3.16 Bearing monitoring... 56
3.16.1 Bearing monitoring using a Pt 100 resistance thermometer............................... 56
3.16.2 Bearing monitoring by shock-pulse transducer... 56
3.16.3 Bearing monitoring by acceleration sensor... 57
3.17 Speed encoder... 59
3.18 Auxiliary drive.. 60
3.18.1 Auxiliary drive, designed as maintenance drive.. 60
3.18.2 Auxiliary drive, designed as a load drive.. 62
3.18.3 Overrunning clutch... 63

4 Application planning.. 65
4.1 Scope of delivery... 65
4.2 Transport... 66
4.3 Attachment points... 67
4.4 Special aspects of gear unit lubrication and preservation..................................... 70
4.4.1 Regreasing rolling-contact bearings... 70
4.4.1.1 Grease-lubricated rolling-contact bearing.. 70
4.4.2 Special aspects of gear unit preservation... 71

5 Assembly.. 73
5.1 General assembly instructions.. 73
5.2 Unpacking the gear unit.. 74
5.3 Gear unit assembly... 75
5.3.1 Foundation... 75
5.3.2 Description of assembly work.. 76
5.3.2.1 Alignment... 78
5.3.3 Gear unit assembly on housing foot... 80
5.3.3.1 Installation on a foundation frame... 80
5.3.3.2 Mounting on a concrete foundation using stone bolts or foundation blocks.... 81
5.3.3.3 Mounting on a concrete foundation using anchor bolts.............................. 84
5.3.3.4 Mounting on a gear unit swing base.. 86
5.3.4 Mounting on a block flange... 89
5.3.4.1 Requirements... 89
5.3.4.2 Mounting a gear unit with block flange... 90
5.3.5 Mounting the torque arm for the gear unit housing... 91
5.3.5.1 Mounting the torque arm.. 91
5.3.5.2 Mounting the torque arm.. 91
5.4 Shaft-mounted gear unit with hollow shaft... 92
5.4.1 Shaft-mounted gear unit with hollow shaft and parallel keyway........................ 92
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1.1</td>
<td>Preparations</td>
<td>92</td>
</tr>
<tr>
<td>5.4.1.2</td>
<td>Assembly</td>
<td>93</td>
</tr>
<tr>
<td>5.4.1.3</td>
<td>Dismantling</td>
<td>95</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Shaft-mounted gear unit with hollow shaft and spline according to DIN 5480</td>
<td>99</td>
</tr>
<tr>
<td>5.4.2.1</td>
<td>Preparations</td>
<td>99</td>
</tr>
<tr>
<td>5.4.2.2</td>
<td>Assembly</td>
<td>99</td>
</tr>
<tr>
<td>5.4.2.3</td>
<td>Dismantling</td>
<td>102</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Shaft-mounted gear unit with hollow shaft and shrink disk</td>
<td>105</td>
</tr>
<tr>
<td>5.4.3.1</td>
<td>Assembly</td>
<td>105</td>
</tr>
<tr>
<td>5.4.3.2</td>
<td>Dismantling</td>
<td>108</td>
</tr>
<tr>
<td>5.5</td>
<td>Gear unit with type F flange shaft</td>
<td>109</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Requirements</td>
<td>109</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Installing the gear unit</td>
<td>109</td>
</tr>
<tr>
<td>5.6</td>
<td>Couplings</td>
<td>110</td>
</tr>
<tr>
<td>5.7</td>
<td>Connecting components</td>
<td>112</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Gear units with mounted components</td>
<td>112</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Making terminal box connections for pre-wired gear units</td>
<td>112</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Connecting the cooling coil</td>
<td>113</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Connecting the air-oil cooler</td>
<td>113</td>
</tr>
<tr>
<td>5.7.5</td>
<td>Connecting the water-oil cooler</td>
<td>114</td>
</tr>
<tr>
<td>5.7.6</td>
<td>Connecting the heating element</td>
<td>115</td>
</tr>
<tr>
<td>5.7.7</td>
<td>Connecting the pressure monitor</td>
<td>115</td>
</tr>
<tr>
<td>5.7.8</td>
<td>Installing a separate oil supply system</td>
<td>116</td>
</tr>
<tr>
<td>5.7.9</td>
<td>Connecting the oil-level monitoring system</td>
<td>116</td>
</tr>
<tr>
<td>5.7.10</td>
<td>Connecting the Pt 100 resistance thermometer</td>
<td>117</td>
</tr>
<tr>
<td>5.7.11</td>
<td>Connecting the temperature monitor</td>
<td>117</td>
</tr>
<tr>
<td>5.7.12</td>
<td>Connecting the bearing monitoring system</td>
<td>117</td>
</tr>
<tr>
<td>5.7.13</td>
<td>Connecting a speed encoder</td>
<td>118</td>
</tr>
<tr>
<td>5.7.14</td>
<td>Connecting the motor pump</td>
<td>118</td>
</tr>
<tr>
<td>5.7.15</td>
<td>Electrical connections</td>
<td>118</td>
</tr>
<tr>
<td>5.8</td>
<td>Tightening procedure</td>
<td>119</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Introduction</td>
<td>119</td>
</tr>
<tr>
<td>5.8.2</td>
<td>Bolt connection classes</td>
<td>120</td>
</tr>
<tr>
<td>5.8.3</td>
<td>Tightening torques and preload forces</td>
<td>120</td>
</tr>
<tr>
<td>5.9</td>
<td>Final work</td>
<td>122</td>
</tr>
<tr>
<td>6</td>
<td>Commissioning</td>
<td>125</td>
</tr>
<tr>
<td>6.1</td>
<td>Measures prior to commissioning</td>
<td>125</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Gear unit with backstop</td>
<td>126</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Gear unit with auxiliary drive</td>
<td>126</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Oil level monitoring system</td>
<td>127</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Gear units with cooling coil</td>
<td>127</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Gear unit with heating</td>
<td>128</td>
</tr>
<tr>
<td>6.1.6</td>
<td>Gear unit with oil supply system</td>
<td>128</td>
</tr>
<tr>
<td>6.1.7</td>
<td>Filling lubricant into gear units with mounted backstop or auxiliary drive</td>
<td>129</td>
</tr>
<tr>
<td>6.2</td>
<td>Measures during commissioning</td>
<td>129</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Gear units with torque-limiting backstop</td>
<td>130</td>
</tr>
</tbody>
</table>
Table of contents

7 **Operation** ... 131
 7.1 Operating data .. 131
 7.2 Irregularities in operation .. 131
 7.3 Taking the unit out of service ... 132

8 **Servicing** .. 133
 8.1 General maintenance information ... 133
 8.2 Maintenance schedule ... 134
 8.3 Maintenance and servicing work .. 135
 8.3.1 Checking the oil temperature ... 135
 8.3.2 Filling the backstop with oil .. 136
 8.3.3 Checking the friction linings of the torque-limiting backstop 136
 8.3.4 Filling the overrunning clutch of the auxiliary drive with oil 138
 8.3.5 Checking the auxiliary drive ... 138
 8.3.6 Cleaning the fan and gear unit .. 138
 8.3.7 Checking the cooling coil .. 139
 8.3.8 Inspecting the shrink disk .. 139
 8.3.9 Cleaning the coarse filter .. 140
 8.3.10 Cleaning the double change-over filter ... 140
 8.3.11 Checking the speed monitoring of the auxiliary drive ... 141
 8.3.12 Measuring the vibration levels of the rolling-contact bearings 141
 8.3.13 Measuring the temperature at the rolling-contact bearings 142
 8.3.14 Check that all of the fastening bolts are tight .. 142
 8.3.15 General inspection of the gear unit ... 142
 8.3.16 Final work .. 142
 8.4 Possible faults .. 142

9 **Service & Support** ... 149

10 **Disposal** .. 151

11 **Spare parts** ... 153

A **Quality documents** .. 155
 A.1 Declaration of Incorporation ... 155

B **Technical data** .. 157
 B.1 General technical data .. 157
 B.2 Ambient temperature .. 158
 B.3 Types .. 159
 B.4 Weights ... 160
 B.5 Oil quantities ... 161
 B.6 Enveloping surface sound pressure level ... 163

Glossary ... 171

Index ... 173
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2-1</td>
<td>Symbols and markings</td>
<td>16</td>
</tr>
<tr>
<td>Table 2-2</td>
<td>General warnings</td>
<td>17</td>
</tr>
<tr>
<td>Table 3-1</td>
<td>Designs and associated directions of rotation</td>
<td>23</td>
</tr>
<tr>
<td>Table 3-2</td>
<td>Taconite seal versions</td>
<td>36</td>
</tr>
<tr>
<td>Table 3-3</td>
<td>Required cooling water flow rate</td>
<td>45</td>
</tr>
<tr>
<td>Table 3-4</td>
<td>Information about the specific heat output</td>
<td>52</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>Motor assignment for gear unit swing base</td>
<td>88</td>
</tr>
<tr>
<td>Table 5-2</td>
<td>Motor assignment for housing support</td>
<td>91</td>
</tr>
<tr>
<td>Table 5-3</td>
<td>Dimensions for the threaded holes at the face sides of gear unit hollow shafts</td>
<td>98</td>
</tr>
<tr>
<td>Table 5-4</td>
<td>Maximum forcing pressures</td>
<td>104</td>
</tr>
<tr>
<td>Table 5-5</td>
<td>Maximum forcing pressures</td>
<td>104</td>
</tr>
<tr>
<td>Table 5-6</td>
<td>Tightening torques at the flange connections</td>
<td>110</td>
</tr>
<tr>
<td>Table 5-7</td>
<td>Information on tightening fastening bolts</td>
<td>120</td>
</tr>
<tr>
<td>Table 5-8</td>
<td>Preload forces and tightening torques</td>
<td>121</td>
</tr>
<tr>
<td>Table 7-1</td>
<td>Operating data</td>
<td>131</td>
</tr>
<tr>
<td>Table 8-1</td>
<td>Maintenance and servicing work</td>
<td>134</td>
</tr>
<tr>
<td>Table 8-2</td>
<td>Possible faults and their rectification</td>
<td>143</td>
</tr>
<tr>
<td>Table B-1</td>
<td>Weights</td>
<td>160</td>
</tr>
<tr>
<td>Table B-2</td>
<td>Weights</td>
<td>160</td>
</tr>
<tr>
<td>Table B-3</td>
<td>Weights</td>
<td>161</td>
</tr>
<tr>
<td>Table B-4</td>
<td>Weights</td>
<td>161</td>
</tr>
<tr>
<td>Table B-5</td>
<td>Weights</td>
<td>161</td>
</tr>
<tr>
<td>Table B-6</td>
<td>Weights</td>
<td>161</td>
</tr>
<tr>
<td>Table B-7</td>
<td>Oil quantities</td>
<td>162</td>
</tr>
<tr>
<td>Table B-8</td>
<td>Oil quantities</td>
<td>162</td>
</tr>
<tr>
<td>Table B-9</td>
<td>Oil quantities</td>
<td>163</td>
</tr>
<tr>
<td>Table B-10</td>
<td>Oil quantities</td>
<td>163</td>
</tr>
<tr>
<td>Table B-11</td>
<td>Oil quantities</td>
<td>163</td>
</tr>
<tr>
<td>Table B-12</td>
<td>Enveloping surface sound pressure level</td>
<td>164</td>
</tr>
<tr>
<td>Table B-13</td>
<td>Enveloping surface sound pressure level</td>
<td>164</td>
</tr>
<tr>
<td>Table B-14</td>
<td>Enveloping surface sound pressure level</td>
<td>165</td>
</tr>
<tr>
<td>Table B-15</td>
<td>Enveloping surface sound pressure level</td>
<td>166</td>
</tr>
<tr>
<td>Table B-16</td>
<td>Enveloping surface sound pressure level</td>
<td>167</td>
</tr>
<tr>
<td>Table B-17</td>
<td>Enveloping surface sound pressure level</td>
<td>168</td>
</tr>
<tr>
<td>Table B-18</td>
<td>Enveloping surface sound pressure level</td>
<td>169</td>
</tr>
<tr>
<td>Table B-19</td>
<td>Enveloping surface sound pressure level</td>
<td>170</td>
</tr>
</tbody>
</table>

Table of contents

Figures

Figure 3-1 Output shaft versions... 25
Figure 3-2 Sign: Lubrication point.. 26
Figure 3-3 Gear unit equipment on type H..H ≤ 12 gear units................... 26
Figure 3-4 Gear unit equipment on type H..H ≥ 13 gear units.................... 27
Figure 3-5 Gear unit equipment on type H..M ≥ 13 gear units.................... 27
Figure 3-6 Gear unit equipment on type B..H and T..H ≤ 12 gear units....... 28
Figure 3-7 Gear unit equipment on type B..H ≥ 13 gear units.................... 28
Figure 3-8 Gear unit equipment on type B..M ≥ 13 gear units.................... 29
Figure 3-9 Gear unit equipment on type B3.H and T3.H ≤ 12 gear units...... 29
Figure 3-10 Gear unit equipment on type B3.H ≥ 12 gear units.................. 30
Figure 3-11 Mounted oil supply system on type H... gear units.................. 32
Figure 3-12 Mounted oil supply system on type B... and T... gear units....... 32
Figure 3-13 Rotary shaft sealing ring... 34
Figure 3-14 Labyrinth seal... 34
Figure 3-15 Taconite seal.. 35
Figure 3-16 Taconite seal, variants E, F, F-F, F-H and F-K......................... 36
Figure 3-17 Tacolab seal.. 38
Figure 3-18 Backstop.. 40
Figure 3-19 Torque limiting backstop... 42
Figure 3-20 Fan... 43
Figure 3-21 Cooling coil connections... 45
Figure 3-22 Oil supply system with air-oil cooler mounted on gear unit, type H... 47
Figure 3-23 Oil supply system with air-oil cooler mounted on type B... and T... gear units... 47
Figure 3-24 Oil supply system with water-oil cooler mounted on type H... gear units... 49
Figure 3-25 Oil supply system with water-oil cooler mounted on type B... and T... gear units... 49
Figure 3-26 Heating system on type H..., B... and T3... gear units............... 53
Figure 3-27 Oil level monitoring system on type H..., B... and T... gear units... 54
Figure 3-28 Oil temperature monitoring system on type H..., B... and T... gear units... 55
Figure 3-29 Bearing monitoring using a Pt 100 resistance thermometer........ 56
Figure 3-30 Bearing monitoring using shock-pulse transducer................... 57
Figure 3-31 Fully assembled acceleration sensor (A), and threaded connector (B) for variants 1 to 4......................... 58
Figure 3-32 Fully assembled acceleration sensor (C), and the threaded connector (D) for variants 5A and 5B......................... 58
Figure 3-33 Speed encoder... 59
Figure 3-34 Fundamental design of gear unit with main and auxiliary drives 60
Figure 3-35 Gear unit design... 62
Figure 4-1 Transport symbols... 67
Figure 4-2 Shear and lateral pulling when using eye bolts..68
Figure 4-3 Position of the attachment points on type H..., B... and T... gear units............................68
Figure 4-4 Position of the attachment points on type H... gear units with motor.............................69
Figure 4-5 Position of the attachment points on type B... and T... gear units with motor..................69
Figure 4-6 Position of the attachment points on type B... and T... gear units with gear unit swing base....69
Figure 4-7 Position of the attachment points on type B3.H and T3.H gear units with auxiliary drive....70
Figure 5-1 Gap dimension at grease labyrinth..77
Figure 5-2 Alignment surface...78
Figure 5-3 Alignment surfaces for gear units up to size 12:..79
Figure 5-4 Alignment surfaces for gear units above size 13..79
Figure 5-5 Stone bolt..82
Figure 5-6 Foundation block..83
Figure 5-7 Inserted anchor bolt..84
Figure 5-8 Tightened anchor bolt..85
Figure 5-9 Support for gear unit swing base..88
Figure 5-10 Gear unit with block flange...90
Figure 5-11 Torque arm for the gear unit housing..91
Figure 5-12 Gear unit with a hollow shaft and parallel keyway..93
Figure 5-13 Mounting process with screw spindle...95
Figure 5-14 Dismantling using an end plate..96
Figure 5-15 Dismantling using hydraulic pulling equipment..97
Figure 5-16 Hollow shaft with parallel keyway...97
Figure 5-17 Preparation for gear units with hollow shaft and spline...99
Figure 5-18 Mounting with preassembled DU bushing...101
Figure 5-19 Dismantling using an end plate..103
Figure 5-20 Dismantling using hydraulic pulling equipment..104
Figure 5-21 Preparation for gear units with hollow shaft and shrink disk....................................107
Figure 5-22 Possible displacements..111
Figure 5-23 Alignment process based on the example of a flexible coupling..............................111
Figure 8-1 Torque limiting backstop..137
Introduction

Naming convention

This product, which can be used as a gear reduction box or multiplier gear box, is referred to below as the "gear unit".

1.1 General information

Purpose of the operating instructions

These operating instructions describe the gear unit and provide information about handling it - from assembly to maintenance.

Please keep these operating instructions for later use. Please read these operating instructions prior to handling the gear unit and follow the information in them.

Note

Disclaimer

Please make sure that every person who is commissioned to work on the gear unit has read and understood these operating instructions prior to handling the gear unit and adheres to all of the points. Failure to observe these operating instructions can cause product or property damage or personal injury.

Siemens does not accept any liability for damage or operating failures which are due to non-adherence to these operating instructions.

The gear unit described in these instructions reflects the state of technical development at the time these operating instructions went to print.

In the interest of technical advancements, Siemens AG reserves the right to make changes to the individual components and accessories which are considered necessary for improving their performance and safety, while maintaining their essential features.

Basic knowledge required

In order to understand these operating instructions, you will need the following general knowledge about gear units. You will also need a basic understanding of the following topics:

- Application planning
- Assembly
- Commissioning
- Maintenance
Documentation landscape

These operating instructions form part of the delivery of your gear unit.

These operating instructions form part of the complete documentation supplied with the gear unit. The complete documentation encompasses other documents, including:

- Data sheet
- List of equipment
- Dimension drawing
- Operating instructions for gear unit lubrication and preservation BA 7300
- Operating instructions for mounted components
- Operating instructions for third-party vendor devices

Copyright

The copyright for these operating instructions is held by Siemens AG.

Without the authorisation of Siemens AG, these operating instructions may not be used wholly or in parts for competitors’ purposes or be given to third parties.

If you have any technical queries, please contact one of our Customer Services addresses (Page 149).

1.2 Lubricants

The oil used must meet the quality requirements specified in the separately enclosed operating instructions BA 7300 or else the warranty issued by Siemens will be invalidated. Siemens strongly recommends use of one of the oils listed in BA 7300 as these have been properly tested and meet the relevant quality requirements.

In order to avoid any misunderstandings, Siemens wishes to point out that this recommendation does not constitute an approval in the sense of a guarantee for the quality of the lubricant obtained from a supplier. Every lubricant manufacturer is required to guarantee the quality of his/her products.

Information such as oil type, oil viscosity and required oil quantity can be found on the rating plate of the gear unit and in the documentation supplied with the gear unit.

The oil quantity specified on the rating plate is an approximate value. The actual quantity of oil required is determined by the marking on the oil dipstick or oil sight glass.

The operating instructions for the current lubricant recommendations of Siemens AG can also be viewed in the Internet (http://support.automation.siemens.com/WW/view/de/44231658).

The oils listed there undergo continuous testing. As a result, the recommended oil types might in future be removed from the list or replaced by more advanced oils.

Siemens therefore advises users to check this list regularly to ascertain whether the selected lubricating oil is still recommended by Siemens. If it is not, another brand of oil should be selected instead.
2.1 Security notes

Siemens offers products and solutions with industrial security functions, which support the safe and secure operation of plants/systems, solutions, machines, equipment and/or networks. These are important components in a seamless and integrated industrial security concept. Siemens products and solutions undergo continuous development in this respect. Siemens recommends to customers that they ensure they regularly seek information on product updates.

To securely operate Siemens products and solutions, suitable protective measures (e.g. a cell protection concept) should be applied. Every component should be integrated within a seamless and integrated industrial security concept that reflects state-of-the-art technology. At this point, third-party products must also be taken into consideration. You can find additional information about industrial security at: http://www.siemens.com/industrialsecurity

Register for our product-specific newsletter to ensure you are always kept informed about product updates. You can find additional information about this at: http://support.automation.siemens.com.

2.2 The five safety rules

In order to protect yourself and prevent any damage to property, always observe the safety relevant information and the following five safety rules (as per EN 50110-1 "Working on isolated equipment") when working on electrical components of the plant.

Prior to starting work on the machine, follow the safety rules listed below:

1. Disconnect
 Also disconnect auxiliary circuits such as the anti-condensation heater

2. Safeguard against restart

3. Ensure that the system is de-energised

4. Earth and short circuit

5. Cover or cordon off adjacent live parts

When all the work is complete, cancel the safety measures in the reverse sequence.

2.3 General information

Introduction

All work on the gear unit should be performed with care and only by qualified personnel.
Symbols on the gear unit

The following symbols apply to the gear unit; some of which are found as coloured markings on the gear unit:

Table 2-1 Symbols and markings

<table>
<thead>
<tr>
<th>Points labelled on the gear unit</th>
<th>Symbol</th>
<th>Coloured markings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth connection point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air relief point</td>
<td></td>
<td>yellow</td>
</tr>
<tr>
<td>Oil filling point</td>
<td></td>
<td>yellow</td>
</tr>
<tr>
<td>Oil draining point</td>
<td></td>
<td>white</td>
</tr>
<tr>
<td>Oil level indicator</td>
<td></td>
<td>red</td>
</tr>
<tr>
<td>Oil level measurement</td>
<td></td>
<td>red</td>
</tr>
<tr>
<td>Oil overflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection point for vibration monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubrication point</td>
<td></td>
<td>red</td>
</tr>
<tr>
<td>Apply grease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifting eye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye bolt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do not unscrew</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alignment surface, horizontal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alignment surface, vertical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Points labelled on the gear unit | Symbol | Coloured markings
--- | --- | ---
These symbols indicate the oil level checking procedure using the oil dipstick. | ![Symbol] |
These symbols indicate that the oil dipstick must be firmly screwed in. | ![Symbol] |

2.4 General warnings and symbols

The following table contains general warnings and their associated symbols.

<table>
<thead>
<tr>
<th>ISO</th>
<th>ANSI</th>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>Warning - hazardous electrical voltage</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>Warning - explosive substances</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>Warning - entanglement hazard</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>Warning - hot surfaces</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>Warning - substances that can irritate or which are hazardous to health</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>Warning - caustic substances</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>Warning - suspended load</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>Warning - hand injuries</td>
</tr>
<tr>
<td>![Symbol]</td>
<td></td>
<td>ATEX certification</td>
</tr>
</tbody>
</table>
2.5 Special types of danger and personal protective equipment

Requirements

Fulfil the following requirements before commencing work on the gear unit:

- Ensure that the oil pressure lines are depressurised.
- Only perform work on the gear unit when it is not in operation.
- Disconnect electrical systems from the power supply.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric shock</td>
</tr>
<tr>
<td>Live parts can cause electric shock.</td>
</tr>
<tr>
<td>Ensure that the entire plant is de-energised before starting electrical installation work.</td>
</tr>
</tbody>
</table>

Protective equipment

Wear the following personal protective equipment when handling the gear unit:

- Safety shoes
- Overalls
- Helmet
- Safety gloves
- Safety goggles

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of eye injury</td>
</tr>
<tr>
<td>Small foreign particles such as sand or dust can enter the cover plates of the rotating parts and be hurled back by them.</td>
</tr>
<tr>
<td>Wear safety goggles.</td>
</tr>
</tbody>
</table>

Dangers during operation

Damage to the gear unit is possible.
Switch the gear unit to standstill immediately if inexplicable changes are noticed during operation. Such changes may include unusual gear unit noise or a significant increase in operating temperature.

WARNING

Risk of falling
There is an increased risk of falling when standing or walking on the gear unit during operation. Only walk or stand on the gear unit and its mounted components for maintenance and repair work when it is at a standstill. Do not walk or stand on shaft ends, protection covers, mounted components or pipes.

WARNING

Danger to life through rotating or moving parts
There is danger that rotating or moving parts may catch hold of you or pull you in. Secure rotating and/or moving parts against contact using safeguards.

Surface temperature

The surface temperatures of the gear unit can become very extreme depending on the operating conditions.

WARNING

Risk of burns
Possible risk of serious burn injury from hot surfaces (> 55 °C). Wear suitable protective gloves and protective clothing.

WARNING

Risk of scalding
Risk of serious injury possible through escaping hot operating media when these are being changed. Wear suitable protective gloves, safety goggles and protective clothing.

WARNING

Danger due to low temperatures
Possible risk of serious injuries due to frost (pain, numbness, frostbite) on cold surfaces (< 0 °C). Wear suitable protective gloves and protective clothing.
Chemical substances

Injuries can be sustained when using chemical substances.

WARNING

Risk of chemical burns due to chemical substances

There is a risk of chemical burns when handling aggressive cleaning agents. Please observe the manufacturer's guidelines on how to handle cleaning agents and solvents. Wear suitable protective equipment (gloves, safety goggles). Please use binding agents to immediately clear up any spilt solvent.

CAUTION

Risk of injury due to chemically aggressive operating materials

There is a risk of injury to eyes and hands when handling chemically aggressive operating materials. Please observe the safety instructions in the data sheets of the oil used. Wear suitable protective equipment (gloves, safety goggles). Use an oil-binding agent to immediately clean up spilt oil.

Danger of explosion

An explosion may occur in a potentially explosive atmosphere.

DANGER

Danger of explosion through ignition of a potentially explosive atmosphere

Danger to life through ignition of a potentially explosive atmosphere possible when operating the gear unit

Do not use the gear unit in potentially explosive atmospheres.

2.6 Intended use

Only use the gear unit according to the conditions specified in the service and delivery contract and the technical data in the annex (Page 157). Deviating operating conditions are considered improper use. The user or owner of the machine or plant is solely liable for any resulting damage.
When using the gear unit please specifically observe the following:

- Do not make any modifications to the gear unit which go beyond the permissible handling described in these operating instructions. This also applies to safety features designed to prevent accidental contact.

- Only ever use original spare parts. Other spare parts are not tested and approved by Siemens. Non-approved spare parts may possibly change the design characteristics of the gear unit and thus impair its active or passive safety. Siemens will accept no liability or warranty whatsoever for damage occurring as a result of the use of non-approved spare parts. The same applies to any accessories which were not supplied by Siemens.

If you have any queries, please contact Customer Services (Page 149).

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of falling</td>
</tr>
<tr>
<td>Risk of possible serious injury through falling.</td>
</tr>
<tr>
<td>Only walk or stand on the gear unit for maintenance and repair work when it is at a standstill. Do not walk or stand on shaft ends, protection covers, mounted components or pipes.</td>
</tr>
</tbody>
</table>

Gear unit use

When using the gear unit, please observe the following basic rules:

- Ensure that the gear unit is operationally safe.

- The gear unit should only be operated, maintained or repaired by authorised, trained and suitably qualified personnel.

- The relevant work safety and environmental protection regulations must be complied with at all times during transport, assembly, dismantling, operation, maintenance and servicing.

- The outside of the gear unit must not be cleaned using high-pressure cleaning equipment.

- No welding work must be performed on the gear unit or on parts connected to it. The gear unit and any parts connected to it must not be used as an earthing point for electric-welding operations. Gearing and rolling-contact bearings might be irreparably damaged by welding.

- Perform potential equalisation in accordance with the applicable regulations and guidelines. If no threaded holes are available on the gear unit for an earth connection, please take suitable measures. This work must always be done by specialist electricians.

- In the case of gear units that are operated in combination with electrical machines that generate current or through which current flows (e.g. motors and generators), take measures to ensure that no current can flow through the gear unit. Current flowing through the gear unit can result in irreparable damage to rolling-contact bearings and gearing. Short circuits, voltage flashovers and deposits of conductive dust, for example, can all allow current to flow. Use insulators and earth the gear unit properly.

- When removing any protective devices, retain their fixings safely.

- Removed protective devices must be re-fitted prior to starting up.
2.6 Intended use

- Pay attention to the notices attached to the gear unit such as the rating plate, direction arrow symbol etc. Notices must not be concealed by paint or dirt. Replace missing plates.
- Bolts which have been damaged during assembly or disassembly work must be replaced with new ones of the same strength class and type.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger to life due to live system</td>
</tr>
<tr>
<td>Death or serious injury will occur.</td>
</tr>
</tbody>
</table>

Always shut down the gear unit and any oil supply system (whether separate or mounted on the gear unit) before you carry out any work. Secure the drive unit against being operated accidentally as follows:

- Turn off the key-operated switch.
- Remove the fuses in the power supply.
- Attach a notice to the start switch, clearly stating that work is being carried out on the gear unit.

Ensure that the entire unit is load-free so that no danger is posed when you start to dismantle components.

Reactivating the gear unit

When installing the gear unit in machines or systems, the machine or system manufacturers must ensure that the regulations, notes and descriptions contained in these operating instructions are incorporated in their own operating instructions.
Description

3.1 General description

The FLENDER® gear unit (referred to below simply as "gear unit") described in these operating instructions has been developed to drive a wide range of machines in general machinery construction. This series of gear units is suitable for applications in the chemical, rubber, foodstuff and plastics industries, for example.

The helical gear unit is available as a one, two, three, or four-stage unit. The bevel helical gear unit is available as a two, three or four-stage unit. The gear unit is also available as a multi-stage bevel helical or helical gear unit with mounted auxiliary drive. These are designed for horizontal mounting. The gear unit is also available for other mounting positions on request.

It can essentially be operated in both directions of rotation. Gear units equipped with backstop or overrunning clutch are the exceptions in this case. Siemens must be consulted if, for these versions, the direction of rotation is to be reversed.

Designs

Various shaft arrangements (versions and directions of rotation) are possible. These are depicted schematically as a solid shaft below. The direction of rotation arrows indicate the dependency of the direction of rotation of the input and output shafts.

Table 3-1 Designs and associated directions of rotation

<table>
<thead>
<tr>
<th>Design</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H1SH</td>
</tr>
<tr>
<td>A</td>
<td>![Design A]</td>
</tr>
<tr>
<td>B</td>
<td>![Design B]</td>
</tr>
<tr>
<td>C</td>
<td>![Design C]</td>
</tr>
<tr>
<td>D</td>
<td>![Design D]</td>
</tr>
<tr>
<td>E</td>
<td>![Design E]</td>
</tr>
</tbody>
</table>
When an auxiliary drive is mounted (as maintenance or load drive), the assignment of the direction of rotation to the specific version is defined in the dimension drawing.

NOTICE

Destruction of the gear unit or parts of the gear unit due to incorrect direction of rotation is possible

Depending on the order specification, the gear unit can have one direction of rotation if it is equipped with a backstop or overrunning clutch.

3.2 Output shaft versions

The following versions of output shaft are available:

- **S** = Solid shaft
- **P** = Solid shaft for paper-making machines
- **V** = Solid shaft, reinforced
- **F** = Flange shaft
- **H** = Hollow shaft with parallel keyway
- **D** = Hollow shaft for shrink disk
- **K** = Hollow shaft with spline according to DIN 5480

The available versions of output shaft are illustrated in the diagram below:
Further information

Further information and a detailed illustrated description of the gear unit can be found in the dimension drawing in the complete documentation for the gear unit.

3.3 Housing

Introduction

The housing is made of cast iron. When specified, the housing can also be manufactured out of steel.

Gear units up to and including size 12 have a one-part housing. By way of an exception, type H1SH, H2PH and T3.. gear units have a two-part housing. Gear units in size 13 or over also have a two-part housing.

The gear unit housing has the following features:

- Attachment points for moving the gear unit
- Inspection and assembly cover for inspection
- Oil filling point for refilling with oil
- Oil sight glass, oil level indicator or dipstick for checking the oil level
- Oil drain screw or oil drain valve for changing the oil
- Air filter or wet-air filter for ventilation and bleeding

If several components for checking the oil level are mounted on the gear unit, the dipstick should be regarded as the most reliable.

Further information

Further information and a detailed illustrated description of the gear unit can be found in the dimension drawing in the complete documentation for the gear unit.
The lubrication points are designated using the following sign:

![Lubrication point sign](image)

Figure 3-2 Sign: Lubrication point

Gear unit equipment

The diagram below shows the gear unit equipment on type H..H ≤ 12 gear units:

![Gear unit equipment on type H..H ≤ 12 gear units](image)

1. Lifting eyes
2. Housing
3. Inspection and assembly cover
4. Rating plate
5. Cover
6. Gear unit fastening
7. Fastening for torque arm
8. Shaft seal
9. Fan cover
10. Cover
11. Fan

Figure 3-3 Gear unit equipment on type H..H ≤ 12 gear units

The diagram below shows the gear unit equipment on type H..H ≥ 13 gear units:
Gear unit equipment on type H..H ≥ 13 gear units

The diagram below shows the available gear unit equipment on type H..M ≥ 13 gear units:

Gear unit equipment on type H..M ≥ 13 gear units

The diagram below shows the available gear unit equipment on type B..H and T..H ≤ 12 gear units:
3.3 Housing

Figure 3-6 Gear unit equipment on type B..H and T..H ≤ 12 gear units

The diagram below shows the available gear unit equipment on type B..H ≥ 13 gear units:

Figure 3-7 Gear unit equipment on type B..H ≥ 13 gear units

The diagram below shows the available gear unit equipment on type B..M ≥ 13 gear units:
3.3 Housing

Gear unit equipment on gear units with auxiliary drive

The diagram below shows the available gear unit equipment on type B3.H and T3.H ≤ 12 gear units:
The diagram below shows the available gear unit equipment on type B3.H ≥ 12 gear units:

- **Shaft seal**
- **Lifting eyes**
- **Inspection and assembly cover**
- **Alignment surfaces**
- **Alignment thread**
- **Gear unit fastening**
- **Fan cover**
- **Fan**
- **Electric motor**
- **Speed monitoring**
- **Main gear unit**
- **Backstop**
- **Overrunning clutch**
- **Auxiliary gear unit**

Figure 3-10 Gear unit equipment on type B3.H ≥ 12 gear units

Further information
Further information about the position of the mounted components and a detailed illustration of the gear unit can be found in the dimension drawing in the complete documentation for the gear unit.

3.4 Oil supply to the gear unit

The oil supply to the various gear unit components can be implemented using the following oil supply variants:
- Splash lubrication
- Pressure lubrication
- Combination of both oil supply variants

3.4.1 Splash lubrication

Unless otherwise agreed by contract, the gearing and rolling-contact bearings are supplied with an adequate quantity of oil by splash lubrication.
Depending on the order specification, the splash lubrication system can be supplemented by grease lubrication of individual rolling-contact bearings.

3.4.2 Pressure lubrication

Introduction

Depending on the order specification, splash lubrication can be supplemented or replaced by pressure lubrication, i.e. with

- A mounting position that is not horizontal
- Higher rolling-contact bearing speeds
- High gear circumferential velocities

With pressure lubrication, the rolling-contact bearings and gears located above the oil level are adequately supplied with oil through pipes.

Designs

The following designs are possible:

- Mounted oil supply system
- Separate oil supply system

Pressure lubrication by mounted oil supply system

The oil supply system is mounted on the gear unit and comprises the following components:

- Flange or motor pump
- Oil filter (coarse filter or a double change-over filter)
- Pressure monitor
- Pipes

Switch on the motor pump 5 minutes before you start up the gear unit.

Note

Observe the flow direction of the pump

When connecting the valves, observe the actual flow direction of the pump.

Refer to the complete gear unit documentation to ascertain whether the flow direction of the pump used depends on the direction of rotation.
Mounted oil supply system

The diagram below shows an oil supply system mounted on type H... gear units:

![Diagram of oil supply system on type H... gear units](image1)

1. Coarse filter
2. Pressure monitor
3. Flange pump
4. Double change-over filter

Figure 3-11 Mounted oil supply system on type H... gear units

The diagram below shows an oil supply system mounted on type B... and T... gear units:

![Diagram of oil supply system on type B... and T... gear units](image2)

1. Flange pump
2. Coarse filter
3. Pressure monitor
4. Double change-over filter

Figure 3-12 Mounted oil supply system on type B... and T... gear units

Depending on the order specification, a motor pump can be used instead of a flange pump.

Further information

Additional information and a detailed illustrated description of the gear unit and the oil supply system can be found in the dimension drawing in the complete gear unit documentation.

Additional information about the oil supply system and control instructions can be found in the separate data sheet, in the list of equipment and in the oil supply system operating instructions provided in the complete gear unit documentation.
3.4.2.1 Pump

Requirements placed on the medium being pumped

The pump being used is suitable for pumping lubricating oil. It is not permissible that the oil contains abrasive components and must not chemically attack the materials used in the pump. Clean oil with good lubricating properties is a precondition for ensuring the correct function, high operational reliability and long service life of the pump.

3.4.2.2 Oil filter

Introduction

The oil filter protects downstream units, measuring and control devices against dirt and pollution.

A coarse filter is mounted as standard on gear units up to size 12, and a double change-over filter on gear units of size 13 and over. The oil filter may vary depending on the order specification. The type of oil filter mounted on the gear unit is specified in the list of equipment in the complete documentation for the gear unit.

Principle of operation

The oil filter comprises a housing with connections and a filter cartridge. The medium flows through the filter housing, where, depending on the filter gauge, most of the dirt particles larger than a defined size in the oil are filtered out. Dirty filter cartridges must be cleaned or replaced.

3.5 Bearing arrangement of the shafts

All shafts are mounted on rolling-contact bearings.

3.6 Shaft seal

Introduction

Depending on requirements, shaft seals prevent oil from escaping from the gear unit or dirt from entering the gear unit.
3.6.1 Rotary shaft sealing rings

Rotary shaft sealing rings are the standard seal used. Wherever possible, rotary shaft sealing rings are equipped with an additional dust lip which protects the actual sealing lip against external contaminants.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irreparable damage to the rotary shaft sealing ring caused by high concentration of dust</td>
</tr>
</tbody>
</table>
A damaged rotary shaft sealing ring might not be able to effectively seal the gear unit. In very dusty atmospheres, do not use rotary shaft sealing rings unless they have additional protection.

The diagram below shows a rotary shaft sealing ring

![Rotary shaft sealing ring](image)

Figure 3-13 Rotary shaft sealing ring

3.6.2 Labyrinth seals

Labyrinth seals as non-contact seals prevent shaft wear. They do not require any maintenance and improve the temperature behaviour of the gear unit. Labyrinth seals can only be used for certain gear ratios and minimum speeds or in conjunction with a pressure lubrication system. The spare parts drawing and spare parts list specify whether or not the gear unit is equipped with labyrinth seals.

A labyrinth seal is illustrated in the diagram below:

![Labyrinth seal](image)

Figure 3-14 Labyrinth seal
To work reliably, labyrinth seals must be installed in stationary, horizontal positions without dirty water or any substantial amount of dust. Overfilling the gear unit can result in leaks, the same applies to oil with a high foam content.

3.6.3 Taconite seal

The taconite seal is a combination of two sealing elements:

- Rotary shaft seal to prevent the escape of lubricating oil
- Grease-filled dust seal (comprising a labyrinth and a lamellar seal) to allow operation of the gear unit in extremely dusty environments

The taconite seal is ideal for use in dusty environments.

NOTICE

Gear unit leaks caused by poor sealing

Regrease the labyrinth seals at the specified regreasing intervals. The regreasing intervals are specified in the Maintenance schedule (Page 134).

A taconite seal is illustrated in the diagram below:

![Taconite seal diagram](image)

Figure 3-15 Taconite seal

The following design variants of taconite seal are available:
The various taconite seals are described in the following table:

<table>
<thead>
<tr>
<th>Taconite seal versions</th>
<th>Application</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>"E"</td>
<td>All input shafts with or without fan</td>
<td>● Regreasable labyrinth</td>
</tr>
<tr>
<td>"F"</td>
<td>Output shaft
Design S: Solid shaft
Design V: Solid shaft, reinforced
Design P: Solid shaft for paper-making machines
Design F: Flange shaft</td>
<td></td>
</tr>
</tbody>
</table>
Taconite seal versions

<table>
<thead>
<tr>
<th>Taconite seal versions</th>
<th>Application</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| "F-F" | Output shaft
Design H: Hollow shaft with parallel keyway
Design K: Hollow shaft with spline according to DIN 5480
Design D: Hollow shaft for shrink disk |
- Labyrinth which can be regreased on both sides, including cover to protect against accidental contact at the gear unit end facing away from the output shaft |
| "F-H" | Output shaft
Design H: Hollow shaft with parallel keyway
Design K: Hollow shaft with spline according to DIN 5480 |
- Regreasable labyrinth on the output side, dust-proof protection cover on the opposite side |
| "F-K" | Output shaft
Design D: Hollow shaft for shrink disk | |

NOTICE

Sparking, inadmissible temperature rise and shaft seal wear due to insufficient gap dimension

An insufficient gap dimension can cause sparking, inadmissible temperature rise and shaft seal wear.

If the shaft is sealed by taconite seals, make sure that the set gap dimension of 1 mm at the grease labyrinth is not altered when the input and output elements (e.g. coupling components) are installed. Rotating and stationary parts must not touch.

3.6.4 Tacolab seal

Application

Tacolab seals can only be used for certain gear ratios and minimum speeds, or with pressure lubrication.

Properties

Tacolab seals as non-contact seals prevent shaft wear. They do not require any maintenance and improve the temperature behaviour of the gear unit. Tacolab seals also provide protection against dust ingress.

The Tacolab seal is a combination of two sealing elements:

- Labyrinth seal comprising two labyrinth sealing rings to prevent the escape of lubricating oil
- Grease-filled dust seal (comprising a labyrinth and a lamellar seal) to allow operation of the gear unit in extremely dusty environments
A Tacolab seal is illustrated in the diagram below:

1. Outer labyrinth seal
2. Inner labyrinth seal
3. Lamellar seal
4. Labyrinth, filled with grease, can be regreased
5. Grease nipple

Figure 3-17 Tacolab seal

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparking, inadmissible temperature rise and shaft seal wear due to insufficient gap dimension</td>
</tr>
<tr>
<td>An insufficient gap dimension can cause sparking, inadmissible temperature rise and shaft seal wear.</td>
</tr>
<tr>
<td>If the shaft is sealed by Tacolab seals, make sure that the set gap dimension of 1 mm at the grease labyrinth is not altered when the input and output elements (e.g. coupling components) are installed. Rotating and stationary parts must not touch.</td>
</tr>
</tbody>
</table>

Inadequate lubrication due to escape of oil from the gear unit

To ensure reliable operation of Tacolab seals, the gear unit must be permanently installed in a horizontal position and not exposed to waste water.

Overfilling the gear unit can result in leaks, the same applies to oil with a high foam content.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear unit leaks caused by poor sealing</td>
</tr>
<tr>
<td>Gear unit leaks caused by poor sealing are possible.</td>
</tr>
<tr>
<td>Regrease the labyrinth seals at the specified regreasing intervals. The regreasing intervals are specified in the Maintenance schedule (Page 134).</td>
</tr>
</tbody>
</table>

Further information

Check in the spare parts drawing and the spare parts list as to whether the gear unit is equipped with Tacolab seals.
3.7 Backstop

Introduction

For some requirements, the gear unit can be equipped with a mechanical backstop. In operation, the backstop only permits the specified direction of rotation. The direction of rotation is specified at the gear unit input - and - output using an arrow.

The backstop is mounted to the gear unit through an intermediate flange creating an oil tight seal; the backstop is integrated in the gear unit oil circuit.

Principle of operation

The backstop is fitted with centrifugally-operated sprags. If the gear unit rotates in the specified direction, the inner ring rotates together with the sprag cage in the direction of rotation of the shaft, while the outer ring remains stationary. Above a certain speed (disengagement speed) the sprags disengage from the outer ring. In this operating state, the backstop operates without any wear.

Before connecting the motor, identify the phase sequence of the three-phase power system using a phase sequence indicator. Connect the motor corresponding to the defined direction of rotation.

The blocking direction of the backstop can be changed by turning over the cage. You must always contact Siemens in advance if you wish to change the blocking direction.

NOTICE

Damage to the backstop and gear unit due incorrect direction of rotation

Damage to the backstop and gear unit due incorrect direction of rotation possible.

Do not operate the motor adversely to the blocking direction of the gear unit. Observe the note attached to the gear unit.
3.8 Torque limiting backstop (special version)

Introduction

A torque-limiting backstop is available for special applications, e.g. for twin drives. This backstop is a combination of a backstop with centrifugally-operated sprags and a brake.

The torque limiting backstop is mounted to the gear unit through an intermediate flange creating an oil tight seal; the backstop is integrated in the gear unit oil circuit.

Slipping torque

The guide screws of the springs are locked using locking wire so that the slipping torque that has been adjusted cannot be changed. The warranty is null and void if the locking wire for the screws is either missing or damaged.
Generally, the backstop operates without any wear. As a preventive measure, dimension "x_mn" should be checked each time that the backstop is actuated (only type FXRT) - and then it should be checked every 12 months.

WARNING

Risk of injury as a result of moving system parts

There is a risk that after the motor is switched off the load cannot be securely kept in position, and that it can accelerate in the reverse direction.

The slipping torque has been set to the correct value in the factory and must not be changed.

Principle of operation

The slipping torque is adjusted using a number of springs. As a result of the "slippage", the gear unit and the sprags of the backstop are protected against inadmissibly high stresses when rotating backward. In addition, for twin drives, the load is uniformly distributed across both gear units when rotating backwards.

Before connecting the motor, identify the phase sequence of the three-phase power system using a phase sequence indicator. Connect the motor corresponding to the defined direction of rotation.

You can change the blocking direction of the backstop by turning over the cage. You must always contact Siemens in advance if you wish to change the blocking direction.

NOTICE

Damage to the backstop and gear unit due incorrect direction of rotation

Damage to the backstop and gear unit due incorrect direction of rotation possible.

Do not operate the motor adversely to the blocking direction of the gear unit. Observe the note attached to the gear unit.
The diagram below shows a torque-limiting backstop:

![Torque Limiting Backstop Diagram](image-url)

- ① Guide screw with spring
- ② Locking wire
- ③ Inner ring
- ④ Outer ring
- ⑤ Friction lining
- ⑥ Cage with sprags
- ⑦ Shaft (intermediate flange)

Figure 3-19 Torque limiting backstop

3.9 Cooling

Introduction

The gear unit can be equipped with the following cooling equipment depending on requirements:

- Fan
- Cooling coil
- Mounted oil supply system with air-oil cooler
- Mounted oil supply system with water-oil cooler
- Separate oil supply system

When installing the gear unit, make sure that unhindered convection across the housing surface is possible in order to protect the gear unit against overheating.
3.9.1 Fan

Principle of operation

Generally, the fan is mounted on the high-speed shaft of the gear unit and is protected from accidental contact using an air guide cover. The fan draws in air through the protective grille of the air guide cover and blows it along the lateral air ducts on the gear unit housing. The fan dissipates a certain amount of heat from the housing.

Improper use can damage the gear unit. Follow the instructions given below in order to protect the gear unit against overheating:

- When you install the protective device for the coupling or similar on gear units that are equipped with a fan, make sure that you leave sufficient clearance for cooling air to be drawn into the fan.
 The required clearance is specified in the dimension drawing in the complete documentation for the gear unit.
- Make sure that the air guide cover is correctly fastened.
- Protect the air guide cover against damage by external components.
- Make sure that there is no contact between the fan and the air guide cover.
- Note that the cooling effect can be significantly impaired if the fan is dirty or if the surface of the housing is covered with dust or contaminants that act as an insulating layer.
 Clean the fan and the gear unit. Observe the cleaning information in chapter Cleaning the fan and gear unit (Page 138).

A fan mounted on a gear unit is illustrated in the diagram below:

![Diagram of Fan and Air Guide Cover](image-url)
Further information

Further information and a detailed illustration of the gear unit and the position of the mounted components can be found in the dimension drawings in the complete documentation for the gear unit.

3.9.2 Cooling coil

Introduction

The gear unit can be equipped with a cooling coil in the oil sump. The cooling coil is connected to a cooling water supply. The cooling water connection must be provided by the operator. The cooling water can be fresh water, sea water or brackish water.

Principle of operation

Heat from the gear unit oil is transferred to the cooling water as it flows through the cooling coil.

Note

To prevent the formation of condensation, make sure that the cooling coil is fully immersed in the oil.

Improper use can damage the cooling coil. Be sure to take the following precautions:

- Make sure that the cooling water pressure does not exceed 8 bar. The direction of water flow through the gear unit is optional.
- Make sure that the ends of the cooling coil are not twisted and that the reducer screws are not removed or retightened.
- Never loosen the locknuts.
- If there is a risk of freezing temperatures or the gear unit is to remain out of service for a prolonged period, drain the cooling water out of the coil and blow the coil out with compressed air to remove any water residue.
- Use a suitable cooling water flow regulator (e.g. a pressure reducing valve or an appropriate isolation valve) in order to prevent excessive water pressure at the cooling water inlet.

⚠️ WARNING

Risk of eye injury from compressed air

Water residue and dirt particles can cause damage to eyes.

Wear suitable safety goggles.
The diagram below shows the cooling coil connections:

Figure 3-21 Cooling coil connections

Refer to the following table for the cooling water flow rate requirements (in l/min):

Table 3-3 Required cooling water flow rate

<table>
<thead>
<tr>
<th>Type</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1SH</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>H2.H</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>H2.M</td>
<td>-</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>H3.M</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>B2.H</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>B2.M</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>B3.H</td>
<td>-</td>
</tr>
<tr>
<td>B3.M</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>T3.H</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>T3.M</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The cooling water flow rate requirements for gear unit sizes of ≥ 19 and for types H4.. and B4.. are available on request.
Further information

For further information and a detailed illustration of the gear unit and the connection dimensions, please refer to the dimension drawings in the complete gear unit documentation.

The required cooling water flow rate and the maximum permissible inlet temperature can be found in the separate data sheet, the list of equipment or the dimension drawing in the complete documentation for the gear unit.

3.9.3 Mounted oil supply system

3.9.3.1 Mounted oil supply system with air-oil cooler

Introduction

Depending on the order specification, an oil supply system with air-oil cooler can be used. This oil cooling system is mounted on the gear unit.

Principle of operation

The air-oil cooler is used to cool the gear unit oil; the ambient air is used as coolant. The oil is fed through the cooler in one or several channels, depending on the volume flow, while passing by the ambient air blown through the cooler by the fan. For cold starts, a bypass pipe with a temperature-controlled valve is provided.

For certain applications, a motor pump can be used instead of a flange pump.

A mounted oil supply system with air-oil cooler can include the following components:

- Air-oil cooler
- Flange or motor pump
- Oil filter (coarse filter or a double change-over filter)
- Pressure monitor
- Temperature control valve
- Pipes

Note

Observe the flow direction of the pump

When connecting the valves, observe the actual flow direction of the pump.

Refer to the pump operating instructions in the complete gear unit documentation to ascertain whether the flow direction of the pump used depends on the direction of rotation.
Improper use can damage the gear unit. Be sure to take the following precautions:

- When installing a gear unit with mounted air-oil cooler, carefully ensure that air can freely circulate.
 The necessary minimum clearance to adjacent components such as walls and panels is specified in the dimension drawing in the complete gear unit documentation.

- Note that the cooling effect can be significantly impaired if the air-oil cooler and the surface of the housing are covered with dust or contaminants that act as an insulating layer. This can cause the gear unit to overheat.
 Clean the air-oil cooler and the gear unit. Cleaning information is provided in chapter Cleaning the fan and gear unit (Page 138).

The diagram below shows an oil supply system with air-oil cooler mounted on type H.. gear units:

![Diagram of oil supply system with air-oil cooler mounted on type H.. gear units]

- ① Coarse filter
- ② Pressure monitor
- ③ Temperature control valve
- ④ Air-oil cooler
- ⑤ Flange pump
- ⑥ Double change-over filter

Figure 3-22 Oil supply system with air-oil cooler mounted on gear unit, type H...

The diagram below shows an oil supply system with air-oil cooler mounted on type H.. and T... gear units:

![Diagram of oil supply system with air-oil cooler mounted on type B.. and T... gear units]

- ① Coarse filter
- ② Pressure monitor
- ③ Temperature control valve
- ④ Air-oil cooler
- ⑤ Flange pump
- ⑥ Double change-over filter

Figure 3-23 Oil supply system with air-oil cooler mounted on type B..: and T... gear units
Further information

Additional information such as connection dimensions and a detailed illustrated description of the gear unit and the oil supply system with air-oil cooler can be found in the dimension drawing in the complete gear unit documentation.

Additional information about the oil supply system and control notes can be found in the separate data sheet, in the list of equipment and in the oil supply system operating instructions provided in the complete gear unit documentation.

3.9.3.2 Mounted oil supply system with water-oil cooler

Introduction

Depending on the order specification, an oil supply system with water-oil cooler can be used. This oil cooling system is mounted on the gear unit.

Principle of operation

The water-oil cooler is used to cool the gear unit oil; water is used as coolant.

For certain applications, a motor pump can be used instead of a flange pump.

A mounted oil supply system with water-oil cooler can include the following components:

- Water-oil cooler
- Flange or motor pump
- Oil filter (coarse filter or a double change-over filter)
- Pressure monitor
- Pipes

The operating company must establish the cooling water connection required.

Note

Observe the flow direction of the pump

When connecting the valves, observe the actual flow direction of the pump.

Refer to the pump operating instructions in the complete gear unit documentation to ascertain whether the flow direction of the pump used depends on the direction of rotation.

Improper use can damage the gear unit. Be sure to take the following precautions:

- Make sure that the cooling water pressure does not exceed 8 bar.
- Maintain the specified flow direction of the water-oil cooler so that an optimum cooling power is achieved. Do not interchange the cooling water intake and outlet.
- If there is a risk of freezing temperatures or the gear unit is to remain out of service for a prolonged period, drain the cooling water out of the coil and blow the coil out with compressed air to remove any water residue.
WARNING
Risk of eye injury from compressed air
Water residue and dirt particles can cause damage to eyes.
Wear suitable safety goggles.

The diagram below shows an oil supply system with water-oil cooler mounted on type H... gear units:

![Diagram of oil supply system with water-oil cooler mounted on type H... gear units]

1. Flange pump
2. Pressure monitor
3. Water-oil cooler
4. Coarse filter
5. Cooling water intake and outlet
6. Double change-over filter

Figure 3-24 Oil supply system with water-oil cooler mounted on type H... gear units

The diagram below shows an oil supply system with water-oil cooler mounted on type B... and T... gear units:

![Diagram of oil supply system with water-oil cooler mounted on type B... and T... gear units]

1. Pressure monitor
2. Water-oil cooler
3. Coarse filter
4. Cooling water intake and outlet
5. Flange pump
6. Double change-over filter

Figure 3-25 Oil supply system with water-oil cooler mounted on type B... and T... gear units
Further information

Additional information such as connection dimensions and a detailed illustrated description of the gear unit and the oil supply system with water-oil cooler can be found in the dimension drawing in the complete gear unit documentation.

Additional information about the oil supply system, control notes, the required cooling water quantity and the maximum permissible water intake temperature can be found in the separate data sheet, in the list of equipment and in the oil supply system operating instructions provided in the complete gear unit documentation.

3.9.3.3 Pump

Requirements placed on the medium being pumped

The pump being used is suitable for pumping lubricating oil. It is not permissible that the oil contains abrasive components and must not chemically attack the materials used in the pump. Clean oil with good lubricating properties is a precondition for ensuring the correct function, high operational reliability and long service life of the pump.

3.9.3.4 Oil filter

Introduction

The oil filter protects downstream units, measuring and control devices against dirt and pollution.

A coarse filter is mounted as standard on gear units up to size 12, and a double change-over filter on gear units of size 13 and over. The oil filter may vary depending on the order specification. The type of oil filter mounted on the gear unit is specified in the list of equipment in the complete documentation for the gear unit.

Principle of operation

The oil filter comprises a housing with connections and a filter cartridge. The medium flows through the filter housing, where, depending on the filter gauge, most of the dirt particles larger than a defined size in the oil are filtered out. Dirty filter cartridges must be cleaned or replaced.

3.9.4 Separate oil supply system

A separate oil supply system can be used for cooling the oil.
Further information

Further information about separate oil supply systems can be found in the oil supply system operating instructions in the complete documentation for the gear unit.

You can find additional information about the components of the oil supply system in the operating instructions for the components in the complete gear unit documentation.

You can find additional technical data in the separate data sheet and in the equipment list in the complete gear unit documentation.

3.10 Couplings

Flexible couplings or safety couplings are generally used at the input end of the gear unit.

For gear unit types with solid output shaft, flexible couplings or safety couplings are generally used for the output shaft.

Use of rigid couplings or other input or output elements that generate additional radial or axial forces (e.g. gear wheels, belt pulleys, flywheels or hydraulic couplings) must be agreed contractually.

If a hydraulic coupling is to be used in combination with gear units with a fan, mount the hydraulic section of the coupling on the motor shaft in order to provide sufficient space for intake of cooling air.

Further information

You can find additional information about the couplings in the coupling operating instructions provided in the complete gear unit documentation.

3.11 Shrink disk

A shrink disk is provided as a frictional clamping connection between the gear unit hollow shaft and the driven machine on shaft-mounted gear units.

The shrink disk allows an interference fit to be created between a hollow shaft and a stub shaft (machine shaft), referred to hereafter as "stub shaft". The interference fit is capable of transferring torques, bending moments and forces. Crucial to the successful transmission of torques and/or power is the joint pressure between the hollow and stub shafts generated by the shrink disk.

Further information

Further information about the shrink disk can be found in the shrink disk operating instructions. These are included in the complete documentation for the gear unit.
3.12 Heating

Introduction

At low ambient temperatures it may be necessary to preheat the gear unit oil before switching on the drive or while it is in operation.

Heating elements

Heating elements can be used for these applications, for example. Heating elements convert electricity into heat and transfer this to the oil in which they are immersed. The heating inserts of the heating elements are installed in protective tubes in the housing so that they can be replaced without draining off the oil first.

Make sure that the heating elements are fully immersed in the oil bath by mounting the gear unit in the correct position as shown in the dimension drawings in the complete documentation, and by keeping the oil topped up to the minimum level.

![WARNING]

Explosion and fire hazard

Exposed heating elements pose a fire hazard.

Do not switch on the heating elements unless you have checked that they are completely immersed in the oil bath.

If heating elements are retrofitted, the heat output at the outer surface of the heating element must not exceed the maximum values stated in the table below.

The following table contains information about the specific heat output \(P_{ho} \) as a function of ambient temperature:

<table>
<thead>
<tr>
<th>(P_{ho}) in W/cm(^2)</th>
<th>Ambient temperature in °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>10 to 0</td>
</tr>
<tr>
<td>0.8</td>
<td>0 to -25</td>
</tr>
<tr>
<td>0.7</td>
<td>-25 to -50</td>
</tr>
</tbody>
</table>
The diagram below shows a heating system on type H..., B... and T3... gear units:

![Diagram of heating system on type H..., B... and T3... gear units](image)

1. Temperature monitor
2. Heating element

Figure 3-26 Heating system on type H..., B... and T3.. gear units

Heating element control

The heating elements can be controlled by a temperature monitor or an Oil temperature monitoring (Page 55). The temperature monitor provides a signal to be amplified when the minimum and maximum temperatures are reached.

Further information

Further information about the position of the mounted components and a detailed illustration of the gear unit can be found in the dimension drawing in the complete documentation for the gear unit.

Further information about heating elements can be found in the separate data sheet, in the list of equipment and in the heating element operating instructions in the complete documentation for the gear unit.

Further information about the temperature monitor as well as control instructions can be found in the list of equipment and the temperature monitor operating instructions in the complete documentation for the gear unit.

3.13 Oil level indicator

The following components for visual monitoring of the oil level can be mounted on the gear unit:

- Oil sight glass
- Oil level indicator
- Oil dipstick

If several components for checking the oil level are mounted on the gear unit, the dipstick should be regarded as the most reliable.
Check the oil level when the gear unit is stationary and with the oil in a cool state.

Further information

Further information about the oil level indicator and checking the oil can be found in the operating instructions BA 7300 in the complete documentation for the gear unit.

Further information and a detailed illustration of the gear unit and the position of the mounted components can be found in the dimension drawing in the complete documentation for the gear unit.

3.14 Oil level monitoring system

Introduction

Depending on the order specification, the gear unit can be equipped with an oil level monitoring system using a filling-level limit switch.

The oil level monitoring system has been designed to check the oil level when the gear unit is at a standstill before it starts.

Mounting position

If you are using an oil level monitoring system, take particular care to ensure that the gear unit is in a horizontal mounting position.

The diagram below shows an oil level monitoring system on type H..., B... and T... gear units:

![Diagram of oil level monitoring system on type H..., B... and T... gear units](image)

Figure 3-27 Oil level monitoring system on type H..., B... and T... gear units

Further information

Further information and a detailed illustration of the gear unit and the position of the mounted components can be found in the dimension drawing in the complete documentation for the gear unit.
Further information about oil level monitoring and the technical data can be found in the operating instructions for the oil level monitoring system, in the list of equipment and in the separate data sheet in the complete documentation for the gear unit.

3.15 Oil temperature monitoring

Depending on the order specification, the gear unit can be fitted with a Pt 100 resistance thermometer for measuring the oil temperature in the oil sump.

To measure temperatures or temperature differences, connect the Pt 100 resistance thermometer to an evaluation unit (to be supplied by the customer). The resistance thermometer is fitted with a connector head for the wiring.

The diagram below shows the oil temperature monitoring system on type H..., B... and T... gear units:

![Diagram of oil temperature monitoring system]

A temperature monitor can be fitted in the oil sump as an alternative method of monitoring the oil temperature.

Further information

Further information and a detailed illustration of the gear unit and the position of the mounted components can be found in the dimension drawing in the complete documentation for the gear unit.

Further information about oil temperature monitoring (such as control instructions) and the technical data can be found in the operating instructions for the oil temperature monitor and in the list of equipment in the complete documentation for the gear unit.
3.16 Bearing monitoring

3.16.1 Bearing monitoring using a Pt 100 resistance thermometer

Depending on the order specification, the gear unit can be equipped with Pt 100 resistance thermometers to monitor the bearings, or prepared for the installation of such thermometers.

You must connect the Pt 100 resistance thermometer to an evaluation unit provided by the customer to be able to measure temperatures or temperature differences. The resistance thermometer has a connection head for the wiring.

The following diagram shows bearing monitoring using a Pt 100 resistance thermometer:

![Diagram showing bearing monitoring using a Pt 100 resistance thermometer](image)

Further information

Further information and a detailed illustration of the gear unit and the position of the mounted components can be found in the dimension drawing in the complete documentation for the gear unit.

Further information about bearing monitoring using a Pt 100 resistance thermometer (such as control instructions) and the technical data can be found in the operating instructions for the Pt 100 resistance thermometer and in the list of equipment in the complete documentation for the gear unit.

3.16.2 Bearing monitoring by shock-pulse transducer

Depending on the order specification, measuring nipples for monitoring the bearings can be installed on the gear unit close to the rolling-contact bearings to be monitored. Alternatively, the gear unit can be supplied with pre-machined threaded holes for installation of measuring nipples.

These measuring nipples are used to attach shock-pulse transducers through a fast-release coupling.
The following diagram shows a bearing monitoring system that uses a shock-pulse transducer:

![Diagram of bearing monitoring system with shock-pulse transducer](image)

1. Shock-pulse transducer

Figure 3-30 Bearing monitoring using shock-pulse transducer

Further information

Further information and a detailed illustration of the gear unit and the position of the mounted components can be found in the dimension drawing in the complete documentation for the gear unit.

Further information about the components can be found in the component operating instructions in the complete documentation for the gear unit.

Further information about the technical data can be found in the separate data sheet or in the list of equipment in the complete documentation for the gear unit.

3.16.3 Bearing monitoring by acceleration sensor

Depending on the order specification, the gear unit can be supplied with threaded holes in which acceleration sensors can be inserted. These threaded holes have an M6 or M8 thread depending on the variant.

The following diagram shows the fully assembled acceleration sensor (A), and the threaded connector (B) for variants 1 to 4:
3.16 Bearing monitoring

Figure 3-31 Fully assembled acceleration sensor (A), and threaded connector (B) for variants 1 to 4

The following diagram shows the fully assembled acceleration sensor (C), and the threaded connector (D) for variants 5A and 5B:

Figure 3-32 Fully assembled acceleration sensor (C), and the threaded connector (D) for variants 5A and 5B
Further information

Further information and a detailed illustration of the gear unit with attached sensors can be found in the dimension drawing in the complete documentation for the gear unit.

Further information about the sensors can be found in the operating instructions for the sensors.

3.17 Speed encoder

Depending on the order specification, an incremental speed encoder can be fitted. Customers must establish the wiring and provide the evaluation unit required.

The following diagram shows a speed encoder:

![Diagram of speed encoder]

Figure 3-33 Speed encoder

Further information

Further information and a detailed illustration of the gear unit and the position of the mounted components can be found in the dimension drawing in the complete documentation for the gear unit.

You can find further information about the speed encoder (such as control instructions) and technical data, in the speed encoder operating instructions and in the equipment list provided in the complete gear unit documentation.
3.18 Auxiliary drive

Introduction

For specific applications, the gear unit can be equipped with an auxiliary drive. The auxiliary drive enables the main gear unit to be operated at a lower output speed in the same direction of rotation. Either Siemens or the customer provides the auxiliary drive. The auxiliary drive is connected to the main gear unit through an overrunning clutch. The auxiliary drive is mounted onto a connection flange, which in turn is attached to the main gear unit.

Before connecting the motor, identify the phase sequence of the three-phase mains using a phase sequence instrument. Then connect the motor so that it rotates in the defined direction.

Observe the note attached to the gear unit.

The basic configuration of the gear unit with main and auxiliary drive is shown in the following diagram.

![Diagram of gear unit with main and auxiliary drives]

- Main gear unit
- Output shaft of the main gear unit
- Backstop
- Coupling
- Main motor
- Auxiliary motor
- Auxiliary gear unit
- Overrunning clutch

Figure 3-34 Fundamental design of gear unit with main and auxiliary drives

Depending on the particular application, two auxiliary drives with two different ratings are available for each gear unit size.

3.18.1 Auxiliary drive, designed as maintenance drive

Auxiliary drive

The auxiliary drive motor is dimensioned so that it is possible to operate the conveyor system under no-load conditions at low speeds in the same direction of rotation.

The auxiliary drive is flanged to the main gear unit through an intermediate flange and coupled to the main gear unit by an overrunning clutch. The overrunning clutch is accommodated in
the intermediate flange, and is supplied with oil from the main gear unit. The auxiliary drive has its own oil.

NOTICE

Overload of the auxiliary drive
Destruction or damage of the auxiliary drive as a result of overload.

The conveyor system may only be driven by the auxiliary drive when operating under no-load conditions.

Oil supply for the auxiliary gear unit

The auxiliary gear unit has its own oil circuit, which is separate from that of the main gear unit.
The auxiliary gear unit is already filled with oil when delivered.

Speed monitoring

To avoid overspeeds if the overrunning clutch was to malfunction, for safety reasons, customers should equip the drive combination with a speed monitoring system. The speed monitoring comprises a pulse encoder, which is mounted in the intermediate flange, and an evaluation unit.

A tapped hole is provided at a suitable location in the intermediate flange to attach the pulse encoder - this is ordered and supplied by the customer. Dimension “x” depends on the data of the device manufacturer. The pulse encoder must be able to be mounted flush.

The speed monitoring device must be connected so that for a speed “> zero” at the output shaft of the auxiliary drive, the main drive is automatically switched off. For safety reasons, the switch off function must be tested at regular intervals, at least four times a year. The auxiliary drive is switched on to test the switch off function. If the speed monitor responds - checked e.g. using a warning light - then the speed monitoring is functioning correctly.

WARNING

Severe injury when the auxiliary drive explosively breaks apart
If the overrunning system develops a fault, due to the high resulting speeds, the auxiliary drive can suddenly break apart explosively.
The speed monitoring function is mandatory for safety reasons.

Connecting the auxiliary drive

Before connecting the motor, identify the phase sequence of the three-phase mains using a phase sequence instrument. Then connect the motor so that it rotates in the defined direction.

Observe the note attached to the gear unit.
The diagram below shows the auxiliary drive:
Description

3.18 Auxiliary drive

Further information

You can find further information, a detailed illustration of the gear unit and the position of the auxiliary drive in the dimension drawing in the complete gear unit documentation.

You can find additional information about the auxiliary drive in the auxiliary drive operating instructions in the complete documentation for the gear unit.

You can find the precise designation of the geared motor and the mounting position in the dimension drawings in the complete gear unit documentation.

3.18.2 Auxiliary drive, designed as a load drive

Auxiliary drive

The motor of the auxiliary drive is dimensioned so that it is possible to operate a correctly loaded conveyor system at low speeds in the same direction of rotation.

The auxiliary drive is flanged to the main gear unit through an intermediate flange and coupled to the main gear unit by an overrunning clutch. The overrunning clutch is accommodated in the intermediate flange, and is supplied with oil from the main gear unit. The auxiliary drive has its own oil.
Oil supply for the auxiliary gear unit

The auxiliary gear unit has its own oil circuit, which is separate from that of the main gear unit. The auxiliary gear unit is already filled with oil when delivered.

Further information

Please refer to the information in chapter Auxiliary drive (designed as maintenance drive) (Page 60) for instructions regarding speed monitoring and connection of the auxiliary drive.

You can find further information, a detailed illustration of the gear unit and the position of the auxiliary drive in the dimension drawing in the complete gear unit documentation.

You can find additional information about the auxiliary drive in the auxiliary drive operating instructions in the complete documentation for the gear unit.

You can find the precise designation of the geared motor and the mounting position in the dimension drawings in the complete gear unit documentation.

3.18.3 Overrunning clutch

If, in addition to the main drive, you couple an auxiliary drive to the gear unit, then this coupling is realised using an overrunning clutch.

When the auxiliary drive is used to drive the gear unit, the overrunning clutch allows torque to be transferred in one direction of rotation, while "free-wheeling operation" applies when driven by the main drive.

The output shaft of the main drive rotates in the same direction of rotation, irrespective of whether the main drive is used or the auxiliary drive.

Principle of operation

The overrunning clutch as centrifugally-operated sprags. When the main gear unit rotates with the specified direction of rotation, the inner ring with the sprags rotates, while the outer ring remains stationary. Above a certain speed the sprags disengage, and the overrunning clutch operates without any wear.

When the auxiliary unit drive motor is used as drive via the outer ring, then the overrunning clutch is also driven; this means that the main gear unit is slowly rotated in the selected direction of rotation. In this case, the input shaft of the main gear unit and the main motor simultaneously also slowly rotate when a flexible coupling is used between the main motor and gear unit.

Note

Electrically interlock the main motor and the auxiliary drive motor so that only one of the two motors can be switched on.
Note
When driven by the auxiliary drive, then the input shaft of the main gear unit also slowly rotates. It is not permissible that this rotary motion is prevented. A brake located on the drive side in the main drive must be opened when driven by the auxiliary drive.

NOTICE
Damage to or destruction of the overrunning clutch
Damage to or destruction of the overrunning clutch as a result of increased wear due to operation below disengagement speeds is possible.

Regularly replace the overrunning clutch when operating the gear unit at speeds below the disengagement speed of the overrunning clutch. Data indicating the replacement intervals is provided in the dimension drawing and on a notice plate attached to the gear unit. This plate is attached to the gear unit housing near the overrunning clutch.

Oil supply for the overrunning clutch
The overrunning clutch is accommodated in an intermediate flange, and is supplied with oil from the main gear unit.
4.1 Scope of delivery

The scope of delivery is listed in the shipping documents. Immediately upon receiving the gearbox, check that everything has been delivered. Report any damaged and/or missing parts to Customer Services (Page 149) immediately.

WARNING

Serious injury through defective product

Serious injury may occur.

If the gearbox exhibits any visible damage, you should not put it into operation.

4.2 Transport

General information

The gear unit is delivered fully assembled. Additional items such as shrink disks, couplings, oil coolers, pipework and valves may be delivered separately packaged, as necessary.

When transporting the gear unit, observe the following instructions to avoid damaging the gear unit:

- Always use suitable equipment to transport the gear unit.
- Transport the gear unit without oil filling and leave it in the transport packaging. Depending on the order specification, the gear unit can be shipped filled with oil. Take the extra weight into account (number of litres x 10 N) and transport the gear unit in its final mounting position.
- Do not use incorrect attachment points. The threads in the end faces of the shaft ends may not be used for attaching lifting equipment.
- Do not use the pipework to move the gear unit.
- Ensure that the lifting equipment is adequately designed to accommodate the weight of the gear unit.
WARNING
Risk of crushing
There is a risk of being crushed by a component that becomes detached because the hoisting gear and load suspension device are not suitable for handling it.
When lifting, please observe the load distribution information on the packaging.
When the product is in a raised position, transport it slowly and carefully to avoid injury to persons or damage to the gear unit.

Attaching the gear unit
To transport the gear unit, only attach slings to the marked attachment points that are provided for this purpose.
Please observe the following when attaching slings to the load or raising, lowering or moving it:
- Do not exceed the specified load limits
- If you are using a load suspension device with several load hooks, make sure that the load is evenly distributed between them
- Note the eccentric centre of gravity
- Make sure that the lifting equipment is securely attached
- Keep your speed down when moving the load
- Do not allow the load to sway and do not attach the load to objects or structures inside the building
- Loads must not be suspended from the tip of a load hook
- Always place the products down on a level, non-slip and stable base

DANGER
Falling load
There is a risk of fatal injury from falling loads if these have not been securely attached to the lifting equipment.
Never stand or sit under suspended loads. Do not exceed the load limits of the lifting equipment.

Packaging
The gear unit is delivered fully assembled. Additional equipment is also delivered separately packaged, as necessary.
The gear unit may be packed in various forms, depending on the size of the unit and method of transport.
Please adhere to the symbols applied on the packaging.

![Symbols](image)

Figure 4-1 Transport symbols

4.3 Attachment points

Lifting eyes

Lifting eyes are fitted to the gear unit to assist with its transportation during manufacture and installation.

Carefully ensure that the angle of the vertical load at the gear units lifting eyes does not exceed 45°.

Sling swivels

Threads for screwing in transport lugs are provided on the gear unit to assist with its transportation during manufacture and installation.

The shear pulling must not exceed 45° when the lifting equipment is attached to sling swivels.

Eye bolts

The use of sling swivels instead of eye bolts is generally recommended.

When using eye bolts, please note that their load-bearing capacity may be reduced if they are alternately attached to different components that require moving.

It is not permitted to load eye bolts through lateral pulling contrary to the direction of the eye plane.

The following figure shows the permissible shear and lateral pulling when using eye bolts:
4.3 Attachment points

Position of attachment points

The diagram below shows the position of the attachment points on type H..., B... and T... gear units:

Figure 4-3 Position of the attachment points on type H..., B... and T... gear units

The diagram below shows the position of the attachment points on type H... gear units with motor:
4.3 Attachment points

Transport lock for bracing mounted components during transportation

The diagram below shows the position of the attachment points on type B... and T... gear units with motor:

Transport lock for bracing mounted components during transportation

The diagram below shows the position of the attachment points on type B... and T... gear units with gear unit swing base:

Figure 4-4 Position of the attachment points on type H... gear units with motor

Figure 4-5 Position of the attachment points on type B... and T... gear units with motor

Figure 4-6 Position of the attachment points on type B... and T... gear units with gear unit swing base
The diagram below shows the position of the attachment points on type B3.H and T3.H gear units with auxiliary drive:

![Diagram of attachment points](image)

① Transport lock for bracing mounted components during transportation

Figure 4-7 Position of the attachment points on type B3.H and T3.H gear units with auxiliary drive

Drive units with additional components mounted on the gear unit (such as drive motor, coupling, etc.) may require an extra attachment point owing to the displacement in the centre of gravity caused by the mounted components.

Further information

Further information and a detailed illustration of the gear unit and the position of the attachment points can be found in the drawings in the complete documentation for the gear unit.

4.4 Special aspects of gear unit lubrication and preservation

4.4.1 Regreasing rolling-contact bearings

4.4.1.1 Grease-lubricated rolling-contact bearing

The gear unit can be equipped with grease-lubricated rolling-contact bearings. Grease-lubricated rolling-contact bearings are filled with grease prior to shipment. Please refer to the plates at the regreasing points for information about grease quantities and regreasing intervals.
4.4.2 Special aspects of gear unit preservation

Interior preservation through oil filling

Oil filling must not be used as a means of preserving the interior of gear units with grease-lubricated rolling-contact bearings.
4.4 Special aspects of gear unit lubrication and preservation
5.1 General assembly instructions

The assembly work must be performed very carefully by authorised, trained and suitably instructed personnel. Liability will be disclaimed for damage caused by the incorrect performance of this work.

Requirements

Improper use can damage the gear unit. Be sure to take the following precautions:

- Protect the gear unit against falling objects and from becoming covered over.
- Do not perform any welding work anywhere on the drive.
- Do not use the gear unit as an earthing point for electric-welding operations.
- Use all of the fastening points fitted to the particular unit design.
- Replace any bolts that are no longer fit for use by new bolts of the same strength class and type.
- Make sure that sufficient hoisting gear is available.

Mounting position and attachment points

During the actual planning phase, be sure to allow for sufficient space around the gear unit to enable subsequent upkeep and maintenance work. Take suitable measures to ensure that unhindered convection across the housing surface is possible so that the gear unit does not overheat. Leave sufficient space to allow a free flow of air into gear units that are equipped with a fan.

Do not use incorrect attachment points (Page 65). The position of the attachment points are shown in the dimension drawing in the complete documentation for the gear unit. To ensure that the unit is properly lubricated during operation, please observe the mounting position specified in the dimension drawings.

NOTICE

Heating of the gear unit by external heat sources

The gear unit must not be heated by external heat sources (exposure to direct sunlight, for example) while it is in operation and measures must be taken where necessary to protect it.

You can take the following measures to protect the gear unit against this hazard:

- A sun shield
- An additional cooling device
- A temperature monitoring device with trip function in the oil sump

If you use a sun shield, this may cause a build-up of heat.
If you use a temperature monitoring device, it must be capable of issuing an alarm when the maximum permissible oil sump temperature is reached. It must also be capable of tripping the drive when the maximum permissible oil sump temperature is exceeded. The operator’s process might be interrupted when the drive is shut down.

WARNING

Ignition of vapours emitted from solvents.

There is a risk of injury due to ignition of vapours emitted from solvents when carrying out cleaning work.

Please note the following:

- Ensure adequate ventilation.
- Do not smoke.

5.2 Unpacking the gear unit

Introduction

The scope of delivery is listed in the shipping documents.

WARNING

Risk of serious injury due to defective product

A defective gear unit can result in serious injury.

Do not put the gear unit into operation if any damage is visible.

Contact Customer Services (Page 149).

Requirements

Check that everything has been delivered immediately upon receipt.

NOTICE

Damage to the gear unit due to corrosion

Exposing the gear unit to moisture can result in damage from corrosion.

Do not damage or open the packaging prematurely if the packaging is designed to preserve the unit.
To unpack and use the gear unit, proceed as follows:
1. Remove packaging and transport devices in accordance with regulations.
2. Perform a visual inspection for damage and accumulations of dirt.
3. Immediately report any damaged and/or missing parts to Customer Services (Page 149).
4. Dispose of packaging material and transport devices in accordance with regulations.

5.3 Gear unit assembly

5.3.1 Foundation

Properties of the foundation
The foundation must have the following properties:
- Horizontal and level
- Stability
- Designed for torsional rigidity
- Reaction forces from the gear unit must be braced

Requirements of the foundation
The foundation must meet the following requirements:
- Construct the foundation in such a way that it does not generate any resonance vibrations and that it is isolated against the transmission of vibrations from adjacent foundations.
- Design the foundation according to the relevant weight and torque, taking into account the forces acting on the gear unit.
- Align the foundation carefully with the equipment installed on the input and output sides of the gear unit.
- Take into account any elastic deformation that may be caused by operating forces.
- Install lateral stops to prevent displacement if external forces are acting on the gear unit.
NOTICE

Lack of stable foundation for the gear unit
Damage to the gear unit is possible if it is not mounted on a stable foundation.
Use bolts of at least strength class 8.8. Information and guidance on the tightening torque can be found in chapter Tightening procedure (Page 119). Tighten the fastening bolts and nuts to the specified tightening torque. When tightening the fastening bolts, make sure that the gear unit is free of mechanical stress.

Further information
Further information about dimensions, space requirements and arrangement of supply connections can be found in the complete documentation for the gear unit.

5.3.2 Description of assembly work

Measures to be taken prior to assembly

CAUTION
Risk of chemical burns due to chemical substances
There is a risk of chemical burns when handling aggressive cleaning agents.
Please observe the manufacturer's guidelines on how to handle cleaning agents and solvents. Wear suitable protective equipment (gloves, safety goggles). Please use binding agents to immediately clear up any spilt solvent.

WARNING
Risk of burns
There is a risk of serious burn injury from hot surfaces (> 55 °C).
Wear suitable protective gloves and protective clothing.

Improper use can damage the gear unit. Be sure to take the following precautions:

- Use a suitable cleaning agent to remove the corrosion protection from the shafts and mounting surfaces.
- Do not allow the cleaning agent to come into contact with the shaft-sealing rings.
- Use an assembly fixture to mount the input and output elements (e.g. coupling components) onto the shafts and lock them securely.
- Do not use force (hammer blows, etc.) to fit the coupling components as this can cause internal damage to the gear unit.
• Take care not to damage the shaft sealing rings or shaft running surfaces when fitting the coupling components.

• If the input and output elements must be heated before assembly, the joining temperatures required are listed in the dimension drawings in the coupling operating instructions.

• Unless otherwise specified, heat the coupling parts by an induction heater, with a torch or in an oven.

• Use heat shields designed to protect against radiant heat in order to safeguard the shaft sealing rings against damage or heating to above 100 °C.

• The elements must be quickly pulled onto the shaft as far as stated in the dimension drawing prepared in accordance with order specifications.

• Use suitable hoisting gear to place the gear unit in position.

NOTICE

Poor alignment

The gear unit or individual components can be damaged as a result of poor alignment.

When installing and mounting the drive ensure that the individual components are precisely aligned with one another.

Inadmissibly high alignment errors of the shaft ends to be connected as a result of angular or axial offset result in premature wear and material damage. Base frames or substructures that are too soft can cause the coupling parts to become radially or axially displaced during operation. This displacement is not measurable when the drive is at a standstill.

The following figure shows the gap dimension at the grease labyrinth:

![Figure 5-1 Gap dimension at grease labyrinth](image)

NOTICE

Sparking, inadmissible temperature rise and shaft seal wear due to insufficient gap dimension

An insufficient gap dimension can cause sparking, inadmissible temperature rise and shaft seal wear.

If the shaft is sealed by taconite or Tacolab seals, make sure that the set gap dimension of 1 mm at the grease labyrinth is not altered when the input and output elements (e.g. coupling components) are installed. Rotating and stationary parts must not touch.
Further information

Further information about removing the corrosion protection can be found in the operating instructions BA 7300 in the complete documentation for the gear unit.

Additional information on how gear units should be attached which, as a result of their weight, require a crane or lifting gear, is provided in chapter Application planning (Page 65).

If the gear unit is to be transported with mounted parts and components, then it may be necessary to use additional attachment points. The position of these attachment points can be found in the dimension drawing in the complete documentation for the gear unit.

5.3.2.1 Alignment

Introduction

Depending on the order specification, the top of the housing has machined surfaces (alignment surfaces) to assist with provisional alignment of the gear unit in the horizontal direction.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of fatal injury from flying fragments</td>
</tr>
<tr>
<td>Failure to align the unit with the required degree of accuracy can cause the shaft to rupture. A ruptured shaft can result in serious or even fatal injuries.</td>
</tr>
<tr>
<td>Align the gear unit exactly so that it conforms to the specified alignment values.</td>
</tr>
<tr>
<td>Damage to the gear unit or its components or mounted parts is possible.</td>
</tr>
<tr>
<td>The accuracy of the alignment between the shaft axes largely determines the service life of the shafts, bearings and couplings. Please therefore always endeavour to achieve zero deviation in the alignment of the shaft axes (does not apply to ZAPEX couplings or cardan shafts). In this context, please also refer to the relevant operating instructions for further information about, for example, the requirements of couplings.</td>
</tr>
</tbody>
</table>

Procedure

The gear unit can be equipped with alignment threads in the housing feet to make it simpler to align.

Figure 5-2 Alignment surface
To align the gear unit by its alignment surface, proceed as follows:

1. For the precise position of the alignment surfaces, refer to the dimension drawings in the complete documentation.
2. Note the values inscribed in the alignment surfaces.
3. Use these surfaces as a guide for aligning the gear unit horizontally to ensure that it will run smoothly.

The following diagram shows the alignment surfaces and alignment threads for gear units up to size 12:

![Alignment surfaces for gear units up to size 12](image)

Figure 5-3 Alignment surfaces for gear units up to size 12:

For size 13 or larger gear units, in addition there are also special alignment surfaces on the upper part of the housing for realigning the gear unit. To make it even simpler to align, gear units of these sizes have alignment threads in the housing feet.

The following diagram shows the alignment surfaces for gear units above size 13:

![Alignment surfaces for gear units above size 13](image)

Figure 5-4 Alignment surfaces for gear units above size 13
Further information

Further information and a detailed illustrated description of the gear unit can be found in the dimension drawing in the complete documentation for the gear unit.

Tools

The following tools are needed to perform the final fine alignment (Page 110) work on the shaft axes of the gear unit and the equipment installed on the input and output sides.

- Rulers
- Spirit level
- Dial gauge
- Laser alignment system
- Feeler gauge etc.

Once the gear unit is finely aligned, tighten the foundation bolts and check the settings again. Record the alignment dimensions and keep the report in a safe place together with these operating instructions.

5.3.3 Gear unit assembly on housing foot

Introduction

If necessary, remove the air guide covers from type H1 and H2 gear units so that you can tighten the foundation fixing bolts and then reattach the covers again afterwards.

5.3.3.1 Installation on a foundation frame

Requirements

The following requirements must be fulfilled before the assembly work commences:

- The foundation must be horizontal and level.
- When tightening the fastening bolts, make sure that the gear unit is free of mechanical stress.
Notice

Poor stability

Damage to the gear unit is possible if it is not mounted on a stable foundation.

Make sure that the foundation frame is horizontal and level. It is particularly important that the surface on which the gear unit is mounted is level because this determines the contact pattern of the teeth and the load on the bearings, and so has an influence on the service life of the gear unit. All points on the gear unit mounting surface must lie between two imaginary parallel planes that are 0.1 mm per 1 m apart.

Design the foundation frame according to the relevant weight and torque, taking into account the forces acting on the gear unit. The feet of the gear unit must be properly supported. Base frames or substructures that are too soft can result in radial or axial displacement during operation. This displacement is not measurable when the drive is at a standstill.

Procedure

To install the gear unit on a foundation frame, proceed as follows:

1. Clean the underside of the gear unit feet.
2. Use suitable hoisting gear to set the gear unit down on the foundation frame.
3. Tighten the foundation bolts to the specified tightening torque (Page 120). If necessary, install stops to prevent displacement.
4. Align the gear unit precisely with the input and output equipment (Page 78).
5. Record the alignment dimensions.
6. Keep the report in a safe place together with these operating instructions.

Notice

Damage caused by unevenly tightening the fastening bolts

The gear unit can be damaged by unevenly tightening the fastening bolts.

Evenly tighten the fastening bolts. When tightening the fastening bolts, make sure that the gear unit is free of mechanical stress.

5.3.3.2 Mounting on a concrete foundation using stone bolts or foundation blocks

Requirements

The lower side of the gear unit mounting feet must be clean.
Mounting a gear unit using stone bolts

The following diagram shows a stone bolt:

![Diagram of stone bolt components]

1. Washer
2. Hexagon nut
3. Gear unit foot
4. Foundation
5. Stone bolt

Figure 5-5 Stone bolt

Proceed as follows to mount the gear unit using stone bolts:

1. Attach the stone bolts with washers and hexagon nuts in the foundation mounting points in the gear unit housing.
2. Using a suitable crane or lifting gear, place the gear unit down on the concrete foundation.
3. Align the gear unit so that the input and output shafts are horizontal using shims (Page 78).
4. For higher external forces, if necessary, use lateral stops to prevent the gear unit shifting.
5. Pour concrete into the recesses in the concrete foundation for the stone bolts.
6. After the concrete has set, tighten the hexagon nuts of the stone bolts with the specified tightening torque (Page 120).
7. Record the alignment dimensions and keep the report in a safe place together with these operating instructions.

NOTICE

Damage caused by unevenly tightening the hexagon nuts

The gear unit can be damaged by unevenly tightening the hexagon nuts. Evenly tighten the hexagon nuts. Ensure that the gear unit is not deformed or distorted when tightening the fastening bolts.
Mounting gear units using foundation blocks

The following diagram shows a foundation block:

![Foundation block diagram]

- 1: Fastening bolt
- 2: Washer
- 3: Gear unit foot
- 4: Height of the completed foundation
- 5: Height of the prepared foundation
- 6: Foundation
- 7: Foundation block
- 8: Flat steel plate
- 9: Set screw

Figure 5-6 Foundation block

Proceed as follows to mount the gear unit using foundation blocks:

1. Attach the foundation blocks with washers and fastening bolts in the foundation mounting points in the gear unit housing.
2. Tighten the fastening bolts until the housing feet are lying flat on the foundation blocks.
3. Using a suitable crane or lifting gear, place the gear unit down on the concrete foundation.
4. Align the gear unit so that the input and output shafts are horizontal using the set screws (if available) (Page 78).
5. For higher external forces, if necessary, use lateral stops to prevent the gear unit shifting.
6. Before casting the foundation, close the openings in the foundation blocks using a suitable material (e.g. using polystyrene).
7. Pour concrete into the recesses in the concrete foundation for the foundation blocks.
8. After the concrete has set, tighten the fastening bolts of the foundation blocks with the specified tightening torque (Page 120).
9. Record the alignment dimensions and keep the report in a safe place together with these operating instructions.
NOTICE

Damage caused by unevenly tightening the fastening bolts
The gear unit can be damaged by unevenly tightening the fastening bolts.
Evenly tighten the fastening bolts. Ensure that the gear unit is not deformed or distorted when tightening the fastening bolts.

5.3.3.3 Mounting on a concrete foundation using anchor bolts

Requirements

The lower side of the gear unit mounting feet must be clean.

Inserting the anchor bolt

The following diagram shows the inserted anchor bolt:

![Diagram of inserted anchor bolt](image)

- **Baseplate**
- **Support**
- **Fine-grout concrete**
- **Raw foundation**
- **Anchor bolt**
- **Pressure plate**
- **Wood**
- **Hexagon nut**

Figure 5-7 Inserted anchor bolt

Proceed as follows to insert the anchor bolt:

1. Place the support on the baseplate embedded in the fine-grout concrete.
2. Insert the anchor bolt.
3. Attach the pressure plate and tighten the nuts.
4. Place a piece of wood under the anchor bolt so that it is approximately 10 mm from the upper edge of the support.

5. Using suitable lifting gear, set the gear unit down in position.

Mounting the gear unit using anchor bolts

The following diagram shows a tightened anchor bolt:

![Diagram of an anchor bolt](image)

- Hexagon nut
- Washer
- Housing foot
- Fine-grout concrete
- Raw foundation
- Anchor bolt
- Baseplate
- Support

Figure 5-8 Tightened anchor bolt

Proceed as follows to mount the gear unit using anchor bolts:

1. Pull the anchor bolts upwards. To do this you can use a screw or threaded bar that you screw into the thread on the end face.

2. Attach the washer.

3. Screw on the hexagon nut by hand a few turns.

4. Align the gear unit with the supports (Page 78).
 - Observe the values on the alignment strips.
 - Maintain the alignment tolerances to the units connected at the input and output according to the permissible angular and axial displacements of the couplings.

5. Document the alignment dimensions in the form of a report, and archive this together with these instructions.

6. Keep the anchor bolts in their position by tightening the nuts by hand.

7. Locate the protective sleeve.

8. Attach the hydraulic clamping device.

9. Tighten the screws alternating, taking into account the preload forces (Page 120).
10. Tighten the hexagon nuts to their end stops using a suitable tool.

11. Document the tensioning pressures and preload forces, and archive this report together with these instructions.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect use of the preload tool</td>
</tr>
<tr>
<td>Incorrectly using the preload tool can result in injury.</td>
</tr>
<tr>
<td>To ensure correct handling and adjustment of the preload tool, you must carefully comply with the instructions provided in the manufacturers operating instructions for the preload tool.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequate concrete hardness and strength</td>
</tr>
<tr>
<td>Damage caused by inadequate stability of the gear unit as a result of inadequate concrete hardness and strength is possible.</td>
</tr>
<tr>
<td>The fine-grout concrete must be allowed to harden for at least 28 days before tensioning the anchor bolts.</td>
</tr>
</tbody>
</table>

5.3.3.4 Mounting on a gear unit swing base

Procedure

To mount the gear unit on a swing base, proceed as follows:

1. Clean the lower side of the gear unit mounting feet and the swing base.
2. Using a suitable crane or lifting gear, place the gear unit down on the gear unit swing base.
3. Tighten the foot fastening bolts with the specified tightening torque (Page 120). If necessary, install stops to prevent displacement.
4. Align the gear unit precisely with the input and output equipment (Page 78).
5. Record the alignment dimensions.
6. Keep the report in a safe place together with these operating instructions.
NOTICE

Poor stability

Damage to the gear unit is possible if it is not mounted on a stable foundation.

Make sure that the gear unit swing base is horizontal and level. It is particularly important that the surface on which the gear unit is mounted is level because this determines the contact pattern of the teeth and the load on the rolling-contact bearings, and so has an influence on the service life of the gear unit. Make sure that all points on the gear unit mounting surface lie between two imaginary parallel planes that are 0.1 mm per 1 m apart.

Design the gear unit swing base according to the relevant weight and torque, taking into account the forces acting on the gear unit. The feet of the gear unit must be properly supported. Gear unit swing bases that are too soft can result in radial or axial displacement during operation. This displacement is not measurable when the drive is at a standstill.

NOTICE

Damage caused by unevenly tightening the fastening bolts

The gear unit can be damaged by unevenly tightening the fastening bolts.

Evenly tighten the fastening bolts. When tightening the fastening bolts, make sure that the gear unit is free of mechanical stress.

Support for gear unit swing base

NOTICE

Damage to the gear unit due to incorrect mounting of the motor and gear unit swing base

Damage to the gear unit due to incorrectly mounting the motor and gear unit swing base is possible.

The motor and swing base may only be mounted after prior consultation with Siemens. Mount the torque arm in such a way that it is free of mechanical stress.

After you have finished installing the gear unit swing base, check that the equipment on the input and output sides is still correctly aligned.

The diagram below shows the supports for gear unit swing bases:
The following table lists the motor assignment for the gear unit swing base:

Table 5-1 Motor assignment for gear unit swing base

<table>
<thead>
<tr>
<th>Gear unit size</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>On request</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>5 ... 6</td>
<td></td>
<td>225M</td>
<td>160</td>
</tr>
<tr>
<td>7 ... 8</td>
<td></td>
<td>280M</td>
<td>200</td>
</tr>
<tr>
<td>9 ... 10</td>
<td></td>
<td>315</td>
<td>225M</td>
</tr>
<tr>
<td>11 ... 12</td>
<td></td>
<td>355</td>
<td>280S</td>
</tr>
<tr>
<td>13 ... 14</td>
<td></td>
<td>400M</td>
<td>315M</td>
</tr>
<tr>
<td>15 ... 16</td>
<td></td>
<td>400M</td>
<td>315</td>
</tr>
<tr>
<td>17 ... 18</td>
<td></td>
<td>400M</td>
<td>355L</td>
</tr>
<tr>
<td>19 ... 22</td>
<td></td>
<td>On request</td>
<td></td>
</tr>
</tbody>
</table>

Larger motors may be mounted only after consultation with Siemens.

If you are intending to install a torque arm supplied by the customer, use an elastic element to connect it to the foundation.

Further information

Further information about constructing the foundation for gear units with a torque arm can be found in chapter Foundation (Page 75).
5.3.4 Mounting on a block flange

5.3.4.1 Requirements

Ensure that the following measures are applied before mounting the block flange on the output side:

- The block flange on the output side of the gear unit has a centring shoulder. Machine a bore that matches this centring shoulder in the mating flange on the machine side. Detailed specifications for the centring shoulder and the bore can be found in the dimension drawing in the complete documentation for the gear unit.
- When aligning the machine shaft with the mating flange, keep the radial and angular misalignment as low as possible.
- The area around the face of the block flange and the mating flange on the machine side must be absolutely free of any grease. The reliability with which torque is transmitted depends to a large extent on this.
- Do not use any contaminated solvents or soiled cleaning cloths, nor any cleaning agents that contain oil (such as petroleum or turpentine) to degrease the surfaces.
- The transmittable gear unit torque is restricted by the bolted connection on the hole circle K_1.

![DANGER]

Risk of fatal injury from flying fragments

Non-adherence to the alignment accuracy can result in a broken shaft and as a consequence risk to life and injury.

Align the gear unit exactly so that it conforms to the specified alignment values.

Damage to the gear unit or its components or mounted parts is possible.

The accuracy of the alignment between the shaft axes largely determines the service life of the shafts, rolling-contact bearings and couplings. Please therefore always endeavour to achieve zero deviation in the alignment of the shaft axes (does not apply to ZAPEX couplings).

![CAUTION]

Risk of injury due to chemical substances

Chemical substances pose an injury risk.

Observe the manufacturer’s guidelines on how to handle lubricants and solvents. Wear suitable protective clothing.
The diagram below shows a gear unit with block flange:

![Diagram of gear unit with block flange](image)

NOTICE

Damage to the gear unit by uneven tightening of the connecting bolts

The gear unit can be damaged by unevenly tightening the connecting bolts. Tighten the connecting bolts diagonally and evenly to the specified torque. When tightening the connecting bolts, make sure that the gear unit is free of mechanical stress.

5.3.4.2 Mounting a gear unit with block flange

Procedure

To mount a gear unit with a block flange, proceed as follows:

1. Clean the contact surfaces of the block flange of the gear unit and the mating flange on the machine side.
2. Using suitable lifting gear, set the gear unit down on the mating flange.
3. Make sure that the locating spigots of the flanges are interlocked.
4. Tighten the connecting bolts to the specified torque. Please refer to Tightening torques and preload forces (Page 120) for the correct tightening torque. Always use bolts with a strength class (property class) of at least 8.8.

Further information

You can find additional information about the requirements relating to couplings in the associated operating instructions.
5.3.5 Mounting the torque arm for the gear unit housing

5.3.5.1 Mounting the torque arm

For all shaft-mounted gear units, absorb the reaction torque corresponding to the torque of the machine – and which acts in an opposite direction at the housing.

5.3.5.2 Mounting the torque arm

NOTICE

Damage to the gear unit due to incorrect mounting of the motor and torque arm

Damage to the gear unit due to incorrect mounting of the motor and torque arm is possible.

The motor and torque arm may only be mounted after prior consultation with Siemens. Mount the torque arm to the machine side without causing any distortion or deformation.

Mount the torque arm to the machine side in such a way that it is free of mechanical stress.

In the case of helical gear units with a motor bell housing, the torque arm is opposite the motor bell housing.

The diagram below shows the torque arm for the gear unit housing:

![Torque arm diagram](image)

1. Machine side
2. Elastic pedestal

Figure 5-11 Torque arm for the gear unit housing

The following table lists the motor assignment for the housing support:

<table>
<thead>
<tr>
<th>Gear unit size</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>5 ... 6</td>
<td>225</td>
<td>225</td>
<td>-</td>
<td>225</td>
<td>225</td>
<td>160</td>
</tr>
<tr>
<td>7 ... 8</td>
<td>280</td>
<td>280</td>
<td>180</td>
<td>280</td>
<td>280</td>
<td>200</td>
</tr>
<tr>
<td>9 ... 10</td>
<td>280</td>
<td>280</td>
<td>225</td>
<td>280</td>
<td>280</td>
<td>225</td>
</tr>
<tr>
<td>11 ... 12</td>
<td>315M</td>
<td>315M</td>
<td>250</td>
<td>315M</td>
<td>315M</td>
<td>280</td>
</tr>
<tr>
<td>13 ... 14</td>
<td>-</td>
<td>355</td>
<td>315M</td>
<td>355</td>
<td>355</td>
<td>315M</td>
</tr>
</tbody>
</table>
5.4 Shaft-mounted gear unit with hollow shaft

5.4.1 Shaft-mounted gear unit with hollow shaft and parallel keyway

Introduction

The shaft end of the driven machine shaft (material C60+N or higher strength) must have a parallel key as defined by DIN 6885, Part 1, form A. Furthermore, it should have a hole centred in its end face as defined by DIN 332, form DS (with thread). The connection dimensions for the driven machine shaft can be found in the dimension drawing in the complete documentation.

Preparations

To facilitate dismantling (Page 95), Siemens recommends that you insert a pressure oil connector into the shaft end of the driven machine until it is flush with the bore of the hollow shaft. This connector can also be used to feed in rust remover. Failure to heed this recommendation shall not impose any liability on the plant constructor vis-à-vis the plant operator.

The following diagram illustrates the preparations required for gear units with a hollow shaft and parallel keyway:

<table>
<thead>
<tr>
<th>Gear unit size</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 ... 16</td>
<td>-</td>
<td>355</td>
<td>315</td>
<td>-</td>
<td>355</td>
<td>355M</td>
</tr>
<tr>
<td>17 ... 18</td>
<td>-</td>
<td>355</td>
<td>355M</td>
<td>-</td>
<td>355</td>
<td>355</td>
</tr>
<tr>
<td>19 ... 22</td>
<td>On request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Larger motors may be mounted only after consultation with Siemens.

If you are intending to install a torque arm supplied by the customer, use an elastic element to connect it to the foundation.

Further information

Further information about constructing the foundation for gear units with a torque arm can be found in chapter Foundation (Page 75).
5.4.1.2 Assembly

Measures to be taken prior to assembly

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of injury due to chemical substances</td>
</tr>
<tr>
<td>Observe the manufacturer’s guidelines on how to handle lubricants and solvents.</td>
</tr>
<tr>
<td>Wear suitable protective clothing.</td>
</tr>
</tbody>
</table>

Improper use can damage the gear unit. Be sure to take the following precautions:

- Use a suitable cleaning agent to remove the corrosion protection from the hollow shaft and the machine shaft.
- Inspect the hollow and machine shafts for damaged seats and edges.
- If necessary, rework the components with an appropriate tool and then clean them again.
- Apply an appropriate lubricant to the contact surfaces to protect them against fretting corrosion.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of damage to shaft sealing rings from cleaning agent</td>
</tr>
<tr>
<td>Aggressive chemical cleaning agents may cause damage to shaft sealing rings.</td>
</tr>
<tr>
<td>Do not allow the cleaning agent to come into contact with the shaft-sealing rings.</td>
</tr>
</tbody>
</table>
Mounting

Procedure

NOTICE

Damage to the gear unit
The gear unit can become damaged if it skews during assembly.
The hollow shaft must be flush with the machine shaft during assembly of the gear unit on the machine shaft. Do not allow the gear unit to skew.

NOTICE

Damage to the rolling-contact bearings
The rolling-contact bearings can become damaged if the gear unit skews during mounting.
The hollow shaft may be mounted on a machine shaft shoulder only if the gear unit features one of the following:
- Torque arm
- Elastic pedestal
- Supported by gear unit swing base

Proceed as follows to install the gear unit:
1. Use suitable hoisting gear to lift the gear unit.
2. Mount the gear unit using the nut and screw spindle.
 The gear unit is braced by the hollow shaft.
The diagram below shows the mounting process with screw spindle for gear units with a hollow shaft and parallel keyway:

![Diagram showing mounting process with screw spindle]

- Nut
- End plate
- Nut
- Parallel key
- Machine shaft
- Hollow shaft
- Screw spindle

Figure 5-13 Mounting process with screw spindle

Hydraulic pulling equipment can be used instead of the nut and screw spindle shown in the diagram.

Axial locking

Depending on the version, lock the hollow shaft axially on the machine shaft (e.g. by a locking ring, end plate, adjusting screw).

5.4.1.3 Dismantling

Measures prior to dismantling

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage to the gear unit due to skewing</td>
</tr>
<tr>
<td>The gear unit can become damaged if it skews during dismantling.</td>
</tr>
<tr>
<td>Do not allow the gear unit to skew when you remove it from the machine shaft. When removing the gear unit using hydraulic pulling equipment, excessive force can be placed on the housing, bearings and other gear unit components. Always check the hollow shaft bearings for damage before reattaching the gear unit to the machine shaft.</td>
</tr>
</tbody>
</table>
Note
Reducing the risk of corrosion
When using jacking screws or screw spindles, round off and grease the end of the thread (head) that presses against the driven machine to avoid the risk of corrosion.

Procedure

In order to dismantle a shaft-mounted gear unit from the machine shaft, proceed as follows:

1. Secure the gear unit in position.
2. Remove the axial locking element from the hollow shaft.
3. If fretting corrosion has formed on the seat surfaces, rust remover must be applied so that the gear unit can be more easily detached. The rust remover can be pumped in through the pressure oil connector.
4. Wait for the rust remover to work and then use suitable gear to lift the gear unit and dismantle it using a fixture.
5. Depending on the conditions on site, you can use one of the following methods to remove the gear unit from the machine shaft:
 - With jacking screws in an end plate
 - With a central screw spindle
 - Using hydraulic pulling equipment

The following diagram shows the dismantling procedure using an end plate for gear units with a hollow shaft and parallel keyway:

![Diagram of dismantling procedure using an end plate]

Figure 5-14 Dismantling using an end plate

Legend:

1. Jacking screws
2. Bolts
3. Parallel key
4. Machine shaft
5. Hollow shaft
6. End plate for pressing out
The following diagram shows the dismantling procedure using hydraulic pulling equipment for gear units with hollow shaft and parallel keyway:

1. Screw spindle
2. Hydraulic pulling equipment
3. Pressure oil connector
4. Parallel key
5. Machine shaft
6. Hollow shaft
7. Auxiliary plate for pressing out

Figure 5-15 Dismantling using hydraulic pulling equipment

End plate and auxiliary plate

The end plate and auxiliary plate for removing the gear unit are not supplied as standard with the gear unit. Both end faces of the hollow shaft have threaded holes for attaching the end plate to the shaft.

Further information

Additional information and a detailed illustration of the threaded holes can be found in the dimension drawing in the complete gear unit documentation.

The following diagram shows a hollow shaft with parallel keyway:

Figure 5-16 Hollow shaft with parallel keyway
Assembly

5.4 Shaft-mounted gear unit with hollow shaft

*) 2 threads offset through 180 °

Threaded holes at the face sides of gear unit hollow shafts

Refer to the following table for the dimensions of the threaded holes at the face sides of gear unit hollow shafts:

Table 5-3 Dimensions for the threaded holes at the face sides of gear unit hollow shafts

<table>
<thead>
<tr>
<th>Gear unit size</th>
<th>m in mm</th>
<th>s</th>
<th>t in mm</th>
<th>Gear unit size</th>
<th>m in mm</th>
<th>s</th>
<th>t in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>95</td>
<td>M8</td>
<td>14.5</td>
<td>12</td>
<td>215</td>
<td>M12</td>
<td>19.5</td>
</tr>
<tr>
<td>5</td>
<td>115</td>
<td>M8</td>
<td>14.5</td>
<td>13</td>
<td>230</td>
<td>M12</td>
<td>19.5</td>
</tr>
<tr>
<td>6</td>
<td>125</td>
<td>M8</td>
<td>14.5</td>
<td>14</td>
<td>250</td>
<td>M12</td>
<td>19.5</td>
</tr>
<tr>
<td>7</td>
<td>140</td>
<td>M10</td>
<td>17</td>
<td>15</td>
<td>270</td>
<td>M16</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>150</td>
<td>M10</td>
<td>17</td>
<td>16</td>
<td>280</td>
<td>M16</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>160</td>
<td>M10</td>
<td>17</td>
<td>17</td>
<td>300</td>
<td>M16</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>180</td>
<td>M12</td>
<td>19.5</td>
<td>18</td>
<td>320</td>
<td>M16</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>195</td>
<td>M12</td>
<td>19.5</td>
<td>≥ 19</td>
<td>On request</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTICE

Damage to the gear unit housing or other gear unit components

The gear unit housing or other gear unit components might sustain damage if forcing pressures in excess of the maximum specified values are applied.

When removing a gear unit that is not only supported at the hollow shaft, but also at the housing, the forcing pressures specified in the tables below must not be exceeded. The hollow shaft bearings must always be checked for damage before the gear unit is attached to the machine shaft.

Maximum forcing pressures

Refer to the following table for the maximum forcing pressures:

Table 5-4 Maximum forcing pressures

<table>
<thead>
<tr>
<th>Gear unit size</th>
<th>Maximum forcing pressures in N</th>
<th>Gear unit size</th>
<th>Maximum forcing pressures in N</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>22 600</td>
<td>12</td>
<td>113 600</td>
</tr>
<tr>
<td>5</td>
<td>33 000</td>
<td>13</td>
<td>140 000</td>
</tr>
<tr>
<td>6</td>
<td>37 500</td>
<td>14</td>
<td>160 000</td>
</tr>
<tr>
<td>7</td>
<td>50 000</td>
<td>15</td>
<td>193 000</td>
</tr>
<tr>
<td>8</td>
<td>56 000</td>
<td>16</td>
<td>215 000</td>
</tr>
<tr>
<td>9</td>
<td>65 000</td>
<td>17</td>
<td>240 000</td>
</tr>
<tr>
<td>10</td>
<td>82 000</td>
<td>18</td>
<td>266 000</td>
</tr>
<tr>
<td>11</td>
<td>97 200</td>
<td>≥ 19</td>
<td>On request</td>
</tr>
</tbody>
</table>
5.4.2 Shaft-mounted gear unit with hollow shaft and spline according to DIN 5480

Introduction

The end of the driven machine shaft (material C60+N or higher strength) must have a spline according to DIN 5480. Furthermore, it should have a hole centred in its end face as defined by DIN 332, form DS (with thread). The connection dimensions for the driven machine shaft can be found in the dimension drawing in the complete documentation.

5.4.2.1 Preparations

To facilitate dismantling (Page 102), Siemens recommends that you insert a pressure oil connector into the shaft end of the driven machine until it is flush with the bore of the hollow shaft. This connector can also be used to feed in rust remover. Failure to heed this recommendation shall not impose any liability on the plant constructor vis-à-vis the plant operator.

The following diagram shows the preparation for gear units with hollow shaft and spline:

![Diagram of gear unit preparation](image)

1. Pressure oil connector
2. DU bushing
3. Machine shaft
4. Hollow shaft

Figure 5-17 Preparation for gear units with hollow shaft and spline

5.4.2.2 Assembly

Measures to be taken prior to assembly

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of injury due to chemical substances</td>
</tr>
</tbody>
</table>
Observe the manufacturer’s guidelines on how to handle lubricants and solvents.
Wear suitable protective clothing.
Improper use can damage the gear unit. Be sure to take the following precautions:

- Use a suitable cleaning agent to remove the corrosion protection from the hollow shaft and the machine shaft.
- Inspect the hollow and machine shafts for damaged seats and edges.
- If necessary, rework the components with an appropriate tool and then clean them again.
- Apply an appropriate lubricant to the contact surfaces to protect them against fretting corrosion.

NOTICE

Risk of damage to shaft sealing rings

Aggressive chemical cleaning agents may cause damage to shaft sealing rings. Do not allow the cleaning agent to come into contact with the shaft-sealing rings.

Mounting with preassembled DU bushing

Procedure

NOTICE

Damage to the gear unit

The gear unit can become damaged if it skews during assembly.

When mounting the gear unit, make sure that the hollow shaft and machine shaft are aligned and ensure that the machine shaft splines and hollow shaft splines match up. You can identify the correct spline position by rotating the input shaft or gently swivelling the gear unit on the hollow shaft.

NOTICE

Damage to the rolling-contact bearings

The rolling-contact bearings can become damaged if the gear unit skews during mounting.

The hollow shaft may be mounted on a machine shaft shoulder only if the gear unit features one of the following:

- Torque arm
- Elastic pedestal
- Supported by gear unit swing base

 Proceed as follows to mount the gear unit with integrated DU bushing:

1. Use suitable hoisting gear to lift the gear unit.
2. Mount the gear unit using the nut and screw spindle. The gear unit is braced by the hollow shaft.
The following diagram shows the mounting process with integrated DU bushing for gear units with a hollow shaft and spline:

Figure 5-18 Mounting with preassembled DU bushing

Hydraulic pulling equipment can be used instead of the nut and screw spindle shown in the diagram.

Mounting with DU bushing as a separate component

Procedure

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage to the gear unit</td>
</tr>
<tr>
<td>The gear unit can become damaged if it skews during assembly.</td>
</tr>
</tbody>
</table>

When mounting the gear unit, make sure that the hollow shaft and machine shaft are aligned and ensure that the machine shaft splines and hollow shaft splines match up. You can identify the correct spline position by rotating the input shaft or gently swivelling the gear unit on the hollow shaft.
NOTICE

Damage to the rolling-contact bearings
The rolling-contact bearings can become damaged if the gear unit skews during mounting.

The hollow shaft may be mounted on a machine shaft shoulder only if the gear unit features one of the following:

- Torque arm
- Elastic pedestal
- Supported by gear unit swing base

Proceed as follows to mount the gear unit with hollow shaft and spline onto the driven machine shaft with a DU bushing as a separate component:

1. Use suitable hoisting gear to lift the gear unit.
2. Push the separately supplied DU bushing onto the machine shaft.
3. Use a ratchet tie to tighten the DU bushing until it makes secure contact with the shaft.
4. Move the DU bushing together with the machine shaft into the hollow shaft of the gear unit.

Hydraulic pulling equipment can be used instead of the nut and screw spindle shown in the diagram.

Axial locking

Depending on the version, lock the hollow shaft axially on the machine shaft (e.g. by a locking ring, end plate, adjusting screw).

5.4.2.3 Dismantling

Measures prior to dismantling

NOTICE

Damage to the gear unit
The gear unit can become damaged if it skews during dismantling.

Do not allow the gear unit to skew when you remove it from the machine shaft. When removing the gear unit using hydraulic pulling equipment, excessive force can be placed on the housing, bearings and other gear unit components. Always check the hollow shaft bearings for damage before reattaching the gear unit to the machine shaft.

Note

Reducing the risk of corrosion

When using jacking screws or screw spindles, round off and grease the end of the thread (head) that presses against the driven machine to avoid the risk of corrosion.
Procedure

To remove the shaft-mounted gear unit with hollow shaft from the machine shaft, proceed as follows:

1. Secure the gear unit in position.
2. Remove the axial locking element from the hollow shaft.
3. If fretting corrosion has formed on the seat surfaces, rust remover must be applied so that the gear unit can be more easily detached. The rust remover can be pumped in through the pressure oil connector.
4. To do this, first remove the end plate and locking ring.
5. Wait for the rust remover to work and then use suitable gear to lift the gear unit and dismantle it using a fixture.
6. Depending on the conditions on site, you can use one of the following methods to remove the gear unit from the machine shaft:
 - With jacking screws in an end plate
 - With a central screw spindle
 - Using hydraulic pulling equipment

The following diagram shows the dismantling procedure using an end plate for gear units with a hollow shaft and spline:

![Diagram showing dismantling procedure using an end plate](image-url)
The following diagram shows the dismantling procedure using hydraulic pulling equipment for gear units with hollow shaft and spline:

![Diagram of dismantling procedure](image)

1. Screw spindle
2. Hydraulic pulling equipment
3. Pressure oil connector
4. DU bushing
5. Machine shaft
6. Hollow shaft
7. Auxiliary plate for pressing out

Figure 5-20 Dismantling using hydraulic pulling equipment

NOTICE

Damage to the gear unit housing or other gear unit components

The gear unit housing or other gear unit components might sustain damage if forcing pressures in excess of the maximum specified values are applied.

When removing a gear unit that is not only supported at the hollow shaft, but also at the housing, the forcing pressures specified in the tables below must not be exceeded. The hollow shaft bearings must always be checked for damage before the gear unit is attached to the machine shaft.

Refer to the following table for the maximum forcing pressures:

Table 5-5 Maximum forcing pressures

<table>
<thead>
<tr>
<th>Gear unit size</th>
<th>Maximum forcing pressures in N</th>
<th>Gear unit size</th>
<th>Maximum forcing pressures in N</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>22 600</td>
<td>12</td>
<td>113 600</td>
</tr>
<tr>
<td>5</td>
<td>33 000</td>
<td>13</td>
<td>140 000</td>
</tr>
<tr>
<td>6</td>
<td>37 500</td>
<td>14</td>
<td>160 000</td>
</tr>
<tr>
<td>7</td>
<td>50 000</td>
<td>15</td>
<td>193 000</td>
</tr>
<tr>
<td>8</td>
<td>56 000</td>
<td>16</td>
<td>215 000</td>
</tr>
<tr>
<td>9</td>
<td>65 000</td>
<td>17</td>
<td>240 000</td>
</tr>
</tbody>
</table>
5.4 Shaft-mounted gear unit with hollow shaft

5.4.3 Shaft-mounted gear unit with hollow shaft and shrink disk

Introduction

The end of the driven machine shaft (material C60+N or higher strength) should have a hole centred in its end face as defined by DIN 332, form DS (with thread). The connection dimensions for the driven machine shaft can be found in the dimension drawing in the complete documentation.

5.4.3.1 Assembly

Measures to be taken prior to assembly

<table>
<thead>
<tr>
<th>Gear unit size</th>
<th>Maximum forcing pressures in N</th>
<th>Gear unit size</th>
<th>Maximum forcing pressures in N</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>82 000</td>
<td>18</td>
<td>266 000</td>
</tr>
<tr>
<td>11</td>
<td>97 200</td>
<td>≥ 19</td>
<td>On request</td>
</tr>
</tbody>
</table>

Note

The auxiliary plate is not delivered as standard with the gear unit.

The auxiliary plate for removing the gear unit is not supplied as standard with the gear unit.

Improper use can damage the gear unit. Be sure to take the following precautions:

- Use a suitable cleaning agent to remove the corrosion protection from the hollow shaft and the machine shaft.
- Inspect the hollow shaft and machine shaft for damaged seats and edges.
- If necessary, rework the components with an appropriate tool and then clean them again.

CAUTION

Risk of injury due to chemical substances

Observe the manufacturer’s guidelines on how to handle lubricants and solvents.

Wear suitable protective clothing.
NOTICE
Risk of damage to shaft sealing rings
Aggressive chemical cleaning agents may cause damage to shaft sealing rings.
Do not allow the cleaning agent to come into contact with the shaft-sealing rings.

Note
The bore of the hollow shaft and the machine shaft must be free of any grease
Make sure that the hollow shaft bore and the machine shaft are completely free of grease in the area around the shrink disk seat. The reliability with which torque is transmitted depends to a large extent on this.
Do not use any contaminated solvents or soiled cleaning cloths, nor any cleaning agents that contain oil (such as petroleum or turpentine) to degrease the surfaces.

Pulling on with integrated DU bushing

Procedure

NOTICE
Damage to the gear unit
The gear unit can become damaged if it skews during assembly.
The hollow shaft must be flush with the machine shaft during assembly of the gear unit on the machine shaft. Do not allow the gear unit to skew.

NOTICE
Damage to the rolling-contact bearings
The rolling-contact bearings can become damaged if the gear unit skews during mounting.
The hollow shaft may be mounted on a machine shaft shoulder only if the gear unit features one of the following:
- Torque arm
- Elastic pedestal
- Supported by gear unit swing base

Proceed as follows to mount the gear unit with hollow shaft and shrink disk onto the driven machine shaft with integrated DU bushing:
1. Use suitable hoisting gear to lift the gear unit.
2. Mount the gear unit using the nut and screw spindle.
 The gear unit is braced by the end plate in the hollow shaft.
3. Pull on the gear unit with hollow shaft up to the seat below the shrink disk on the machine shaft.
 The machine shaft centres itself in the seat below the shrink disk and in the DU bushing.

4. Mount the hollow shaft against the machine shaft collar:

 The following diagram shows the preparation for gear units with hollow shaft and shrink disk:

 ![Diagram of preparation for gear units with hollow shaft and shrink disk]

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>End plate</td>
</tr>
<tr>
<td>2</td>
<td>DU bushing</td>
</tr>
<tr>
<td>3</td>
<td>Machine shaft</td>
</tr>
<tr>
<td>4</td>
<td>Nut</td>
</tr>
<tr>
<td>5</td>
<td>Hollow shaft</td>
</tr>
<tr>
<td>6</td>
<td>Screw spindle</td>
</tr>
</tbody>
</table>

 Figure 5-21 Preparation for gear units with hollow shaft and shrink disk

 Parts 4 and 6 are not included in the scope of delivery.

Mounting with DU bushing as a separate component

Procedure

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage to the gear unit</td>
</tr>
<tr>
<td>The gear unit can become damaged if it skews during assembly.</td>
</tr>
<tr>
<td>The hollow shaft must be flush with the machine shaft during assembly of the gear unit on the machine shaft. Do not allow the gear unit to skew.</td>
</tr>
</tbody>
</table>
NOTICE

<table>
<thead>
<tr>
<th>Damage to the rolling-contact bearings</th>
</tr>
</thead>
<tbody>
<tr>
<td>The rolling-contact bearings can become damaged if the gear unit skews during mounting.</td>
</tr>
<tr>
<td>The hollow shaft may be mounted on a machine shaft shoulder only if the gear unit features one of the following:</td>
</tr>
<tr>
<td>• Torque arm</td>
</tr>
<tr>
<td>• Elastic pedestal</td>
</tr>
<tr>
<td>• Supported by gear unit swing base</td>
</tr>
</tbody>
</table>

Proceed as follows to mount the gear unit with hollow shaft and shrink disk onto the driven machine shaft with a DU bushing as a separate component:

1. Use suitable hoisting gear to lift the gear unit.
2. Push the separately supplied DU bushing onto the machine shaft.
3. Use a ratchet tie to tighten the DU bushing until it makes secure contact with the shaft.
4. Move the DU bushing together with the machine shaft into the hollow shaft of the gear unit.

Hydraulic pulling equipment can be used instead of the nut and screw spindle shown in the diagram.

Axial locking

Tightening the shrink disk as per specification ensures that the gear unit is properly axially locked. It is not necessary to install any further axial locking elements.

5.4.3.2 Dismantling

Procedure

To remove the shaft-mounted gear unit with hollow shaft and shrink disk from the machine shaft, proceed as follows:

1. Secure the gear unit in position.
2. Dismantle the shrink disk.
3. Lift the gear unit off the machine shaft using jacking screws until the seats under the shrink disk and the DU Bushing are exposed.
4. Use suitable hoisting gear to lift the gear unit off the machine shaft.
5.5 Gear unit with type F flange shaft

5.5.1 Requirements

Ensure that the following measures are applied before mounting a gear unit with type F flange shaft:

- The area around the face of the flange shaft and mating flange must be absolutely free of any grease. The reliability with which torque is transmitted depends to a large extent on this.
- Do not use any contaminated solvents or soiled cleaning cloths, nor any cleaning agents that contain oil (such as petroleum or turpentine) to degrease the surfaces.

CAUTION

Risk of injury due to chemical substances
Chemical substances pose an injury risk.
Observe the manufacturer’s guidelines on how to handle lubricants and solvents. Wear suitable protective clothing.

5.5.2 Installing the gear unit

Procedure

To mount a gear unit with type F flange shaft, proceed as follows:

1. Clean the contact surfaces of the flange shaft and the mating flange.
2. Using suitable lifting gear, set the gear unit down on the mating flange.
3. Before tightening the fastening bolts, make sure that the locating spigots of the flanges are interlocked.
4. Tighten the connecting bolts diagonally and evenly to the specified torque.

NOTICE

Damage to the gear unit by uneven tightening of the connecting bolts
The gear unit can be damaged by unevenly tightening the connecting bolts. Tighten the connecting bolts diagonally and evenly to the specified torque. When tightening the connecting bolts, make sure that the gear unit is free of mechanical stress.
The following table lists the tightening torques at the flange connections.

Table 5-6 Tightening torques at the flange connections

<table>
<thead>
<tr>
<th>Gear unit size</th>
<th>Strength class</th>
<th>Tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bolt DIN 931</td>
<td>Nut DIN 934</td>
</tr>
<tr>
<td>5 ... 6</td>
<td>10.9</td>
<td>10</td>
</tr>
<tr>
<td>7 ... 10</td>
<td>10.9</td>
<td>10</td>
</tr>
<tr>
<td>11 ... 16</td>
<td>10.9</td>
<td>10</td>
</tr>
<tr>
<td>17 ... 20</td>
<td>10.9</td>
<td>10</td>
</tr>
<tr>
<td>21 ... 22</td>
<td>10.9</td>
<td>10</td>
</tr>
</tbody>
</table>

5.6 Couplings

Introduction

Couplings must be balanced as specified in the relevant operating instructions. Balance the couplings if required.

The coupling parts might become misaligned as a result of:

- Failure to accurately align the parts during assembly
- During operation of the system, e.g.:
 - Due to thermal expansion
 - Due to shaft deflection
 - Due to machine frames or substructures that are too soft

NOTICE

Premature wear and material damage to gear units due to misalignment

Gear units might suffer premature wear and material damage if they are misaligned.

Make sure that the maximum permissible displacement values are never exceeded during operation. These values can be found in the operating instructions for the coupling.

Angular and radial displacement might occur simultaneously. Make sure that the total value of both displacements does not exceed the maximum permissible angular or radial displacement value.

If you are using couplings supplied by other manufacturers, contact them and ask them for the maximum permissible misalignment tolerances, making sure that you specify the potential radial loads for your application.

The following diagram shows the possible displacements:
Alignment

Alignment must be carried out in two axis planes that are vertical with respect to one another. This is possible using rulers (radial offset) and feeler gauges (angular offset) as shown in the diagram. You will achieve a greater degree of alignment accuracy by using a dial gauge or laser alignment system.

The diagram below shows the alignment process based on the example of a flexible coupling:

Note

It is advisable to insert shims or metal sheets under the mounting feet in order to align the drive components in the vertical direction. It is helpful to use support paws with adjusting screws on the foundation to adjust the drive components laterally.

Hollow output shaft and output flange shaft

There is no need to install the output-side coupling for gear units with a hollow output shaft or flanged output shaft.
Further information

Further information about misalignment tolerances for couplings supplied by Siemens can be found in the relevant operating instructions for the couplings in the complete documentation for the gear unit.

If couplings from other manufacturers are to be used, then, specifying the radial loads that occur, ask the manufacturer which alignment errors are permissible.

You can find additional information about couplings in the associated operating instructions.

5.7 Connecting components

5.7.1 Gear units with mounted components

Depending on the order specification, the gear unit can be equipped with various components. Connect the closed-loop control and open-loop control electrical devices corresponding to the specifications of the device supplier.

Further information

You can find additional information on operation and maintenance in the associated operating instructions, provided in the complete gear unit documentation.

You can find the technical data of the mounted components in the contract-list of equipment provided in the complete gear unit documentation.

5.7.2 Making terminal box connections for pre-wired gear units

Procedure

Proceed as follows to wire up the gear unit:

1. Connect up all pre-wired gear units as shown on the circuit diagram in the terminal box.

2. If a pressure monitor is installed, bypass the pressure monitor signal for around 20 seconds during commissioning.
 This is necessary as the pressure in the gear unit must first stabilise.
5.7 Connecting components

5.7.3 Connecting the cooling coil

Procedure

To connect the cooling coil to the gear unit, proceed as follows:
1. Before connecting the cooling coil, remove the sealing plugs from the connection sleeves.
2. Flush through the cooling coil to remove any dirt or dust.
3. Connect up the cooling water inlet and drain lines. Refer to the dimension drawing for the position of the connections.

Further information

Further information about the cooling coil can be found in the complete documentation for the gear unit.

Note

Observe the information provided in chapter Cooling coils (Page 44).

5.7.4 Connecting the air-oil cooler

Procedure

To connect the air-oil cooler to the gear unit, proceed as follows:
1. Make sure that air can circulate freely before you connect up the air-oil cooler.
2. Blast the air-oil cooler with compressed air.
3. Electrically connect the contamination indicator of the double changeover filter and the pressure monitor.

4. Electrically connect the fan motor.

Further information

You can find additional information on the air-oil cooler in the air-oil cooler operating instructions, provided in the complete gear unit documentation.

Note

Observe the information provided in chapter of the Mounted oil supply system with air-oil cooler (Page 46).

5.7.5 Connecting the water-oil cooler

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage to the water-oil cooler</td>
</tr>
<tr>
<td>When installing the piping, it is not permissible that the connections of the water-oil cooler are subject to force, torque or vibration.</td>
</tr>
</tbody>
</table>

Procedure

To connect the water-oil cooler to the gear unit, proceed as follows:

1. Remove the connecting bushes from the cooling water connection before connecting the water-oil cooler.

2. Flush the water-oil cooler to remove any dirt and pollution.

3. Connect up the cooling water inlet and drain lines.
 Refer to the dimension drawing for the direction of flow and the position of the connections.

4. Electrically connect the pressure monitor (only for appropriately equipped gear units).

Further information

You can find additional information on the water-oil cooler in the water-oil cooler unit operating instructions, provided in the complete gear unit documentation.

Note

Observe the information provided in chapter of the Mounted oil supply system with water-oil cooler (Page 48).
5.7.6 Connecting the heating element

Procedure

To connect heating elements to the gear unit, proceed as follows:
1. Check that the heating element connection is not damaged.
2. Connect up the oil temperature monitoring system in the oil sump.
3. Install the electrical wiring for the heating elements.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosion and fire hazard</td>
</tr>
<tr>
<td>Exposed heating elements pose a fire hazard.</td>
</tr>
<tr>
<td>Do not put heating elements into service until you have checked that they are completely immersed in the oil bath.</td>
</tr>
</tbody>
</table>

Further information

Further information about the heating can be found in the heating operating instructions in the complete documentation for the gear unit.

5.7.7 Connecting the pressure monitor

For gear units with a pressure monitor, you must connect the pressure monitor so that it functions correctly.

Bypass the pressure monitor signal for around 20 seconds during commissioning.

Further information

You can find additional information on pressure monitoring in the pressure monitor operating instructions, provided in the complete gear unit documentation.
5.7.8 Installing a separate oil supply system

Procedure

To connect the oil supply system to the gear unit, proceed as follows:

1. Remove the dummy flange from the suction and delivery line before connecting the system.
2. Connect the system to the gear unit in accordance with the dimension drawings in the complete documentation and install it as a separate system.
3. When installing the system, make sure that the pipework is not subjected to mechanical stresses.

Further information

Further information about the oil supply system can be found in the oil supply system operating instructions in the complete documentation for the gear unit.

5.7.9 Connecting the oil-level monitoring system

Procedure

To connect the oil level monitoring system to the gear unit, proceed as follows:

1. Ensure that the filling level limit switch connection is not damaged.
2. Electrically connect the filling level limit switch.
3. Connect the signal so that the drive motor cannot start when the "oil level too low" signal is active and so that an alarm is output. Bypass this signal in operation.

Further information

Additional information about the oil level monitoring system can be found in the operating instructions for the oil level monitoring system components provided in the complete gear unit documentation.

You can find technical data in the separate data sheet and in the list of equipment in the complete gear unit documentation.
5.7.10 Connecting the Pt 100 resistance thermometer

Procedure
To connect the Pt 100 resistance thermometer, proceed as follows:
1. Check that the Pt 100 resistance thermometer connection is not damaged.
2. Install the electrical wiring between the Pt 100 resistance thermometer and the evaluation unit. The customer is responsible for providing the evaluation unit.

Further information
Further information about the Pt 100 resistance thermometer can be found in the Pt 100 resistance thermometer operating instructions in the complete documentation for the gear unit.

5.7.11 Connecting the temperature monitor

Procedure
To connect the temperature monitor to the gear unit, proceed as follows:
1. Make sure that the temperature monitor connection is undamaged.
2. Install the electrical wiring for the temperature monitor.

Further information
Further information about the temperature monitor can be found in the temperature monitor operating instructions in the complete documentation for the gear unit.

5.7.12 Connecting the bearing monitoring system

Procedure
To connect the bearing monitoring system to the gear unit, proceed as follows:
1. Make sure that the connections provided for holding the bearing monitoring equipment are undamaged.
2. Install the bearing monitoring equipment at the customer's site.

Further information
Further information about the bearing monitoring system can be found in the operating instructions for the bearing monitoring system components provided in the complete gear unit documentation.
5.7.13 Connecting a speed encoder

Procedure
To connect the air-oil cooler to the gear unit, proceed as follows:
1. Ensure that the speed encoder connection is not damaged.
2. Electrically connect the speed encoder.

Further information
You can find additional information on the speed encoder in the speed encoder operating instructions, provided in the complete gear unit documentation.

5.7.14 Connecting the motor pump

Procedure
To connect the motor pump, proceed as follows:
1. Make sure that the connections of the motor pump are not damaged.
2. Connect up the motor pump according to the terminal diagram and the relevant operating instructions.

Further information
You can find additional information about the motor pump in the terminal diagrams and the lists of equipment provided in the complete gear unit documentation.

5.7.15 Electrical connections

Procedure

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric shock</td>
</tr>
<tr>
<td>Live parts can cause electric shock.</td>
</tr>
<tr>
<td>Ensure that the entire plant is de-energised before starting electrical installation work.</td>
</tr>
<tr>
<td>Carefully observe the five safety rules (Page 15).</td>
</tr>
</tbody>
</table>
To connect the motors and monitoring devices, proceed as follows:

1. Ensure that the connections of the motors and monitoring devices are not damaged.
2. Connect up the motors and monitoring devices according to the terminal diagram and the relevant operating instructions.
3. Insulate all cable entry points (glands) at electrical equipment as required for the environment in which the equipment will operate.

Further information

You can find additional information about the electrical connections in the terminal diagrams and equipment lists provided in the complete gear unit documentation.

5.8 Tightening procedure

5.8.1 Introduction

Bolts

The bolts must have the following properties:

- Made of steel
- Black-annealed or phosphatised
- Lightly oiled (do not add additional oil)

Note

Replacing bolts

Replace any bolts that are no longer fit for use by bolts of the same type and strength class.

Mating threads

The mating threads must have the following properties:

- Made of steel or cast iron
- Dry, cut threads

Note

Using a lubricant

As a rule, lubricants may not be used, because this can result in the bolt connection becoming overloaded.
5.8.2 Bolt connection classes

In order to affix fastening bolts, note the information in the following table:

Table 5-7 Information on tightening fastening bolts

<table>
<thead>
<tr>
<th>Mounting</th>
<th>Bolt connection class</th>
<th>Scatter of the torque emitted on the tool</th>
<th>Tightening procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear unit</td>
<td>C</td>
<td>± 5 % to ± 10 %</td>
<td>• Hydraulic tightening with mechanical screwdriver</td>
</tr>
<tr>
<td>Motor</td>
<td></td>
<td></td>
<td>• Torque-controlled tightening with a torque wrench or a signal-emitting torque wrench</td>
</tr>
<tr>
<td>Brake</td>
<td></td>
<td></td>
<td>• Tightening with a precision mechanical screwdriver with dynamic torque measurement</td>
</tr>
<tr>
<td>Torque arm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>± 10 % to ± 20 %</td>
<td>• Torque-controlled tightening with mechanical screwdriver</td>
</tr>
<tr>
<td>Protection cover</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun shield</td>
<td>E</td>
<td>± 20 % to ± 50 %</td>
<td>• Tightening with pulse screwdriver or impact wrench, without adjustment checking device</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Tightening by hand, using a wrench without torque measuring device</td>
</tr>
</tbody>
</table>

Further information

You can find additional information about tightening torques when mounting motor and brake in the operating instructions from the particular manufacturer.

5.8.3 Tightening torques and preload forces

The specified bolted connections must be tightened to the torques stated in the table below:

The tightening torques apply to friction values of $\mu_{\text{total}} = 0.14$.
The following table lists the preload forces and tightening torques for bolt connections, strength classes 8.8; 10.9; 12.9:

Table 5-8 Preload forces and tightening torques

<table>
<thead>
<tr>
<th>Nominal thread diameter</th>
<th>Bolt strength class</th>
<th>Preload force for bolt connection classes from the table in chapter Bolt connection classes (Page 120)</th>
<th>Tightening torque for bolt connection classes from the table in chapter Bolt connection classes (Page 120)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d mm</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>F_m, min. N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M10 8.8</td>
<td>18 000</td>
<td>11 500</td>
<td>7 200</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>26 400</td>
<td>16 900</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>30 900</td>
<td>19 800</td>
</tr>
<tr>
<td>M12 8.8</td>
<td>26 300</td>
<td>16 800</td>
<td>10 500</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>38 600</td>
<td>24 700</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>45 100</td>
<td>28 900</td>
</tr>
<tr>
<td>M16 8.8</td>
<td>49 300</td>
<td>31 600</td>
<td>19 800</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>72 500</td>
<td>46 400</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>129 000</td>
<td>82 400</td>
</tr>
<tr>
<td>M20 8.8</td>
<td>109 000</td>
<td>69 600</td>
<td>43 500</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>155 000</td>
<td>99 200</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>181 000</td>
<td>116 000</td>
</tr>
<tr>
<td>M24 8.8</td>
<td>170 000</td>
<td>109 000</td>
<td>68 000</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>243 000</td>
<td>155 000</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>284 000</td>
<td>182 000</td>
</tr>
<tr>
<td>M30 8.8</td>
<td>245 000</td>
<td>157 000</td>
<td>98 300</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>350 000</td>
<td>224 000</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>409 000</td>
<td>262 000</td>
</tr>
<tr>
<td>M36 8.8</td>
<td>331 000</td>
<td>212 000</td>
<td>132 000</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>471 000</td>
<td>301 000</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>551 000</td>
<td>352 000</td>
</tr>
<tr>
<td>M42 8.8</td>
<td>421 000</td>
<td>269 000</td>
<td>168 000</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>599 000</td>
<td>383 000</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>700 000</td>
<td>448 000</td>
</tr>
<tr>
<td>M48 8.8</td>
<td>568 000</td>
<td>363 000</td>
<td>227 000</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>806 000</td>
<td>516 000</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>944 000</td>
<td>604 000</td>
</tr>
<tr>
<td>M56 8.8</td>
<td>744 000</td>
<td>476 000</td>
<td>298 000</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>1 060 000</td>
<td>676 000</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>1 240 000</td>
<td>792 000</td>
</tr>
</tbody>
</table>
5.9 Final work

Measures

Once all the elements have been assembled or connected, perform the following final work:

- Check whether all devices dismantled for transportation have been reassembled.
- Check all bolt connections for tightness after installation of the gear unit has been completed.
- Check the alignment after tightening the fastening elements. The alignment must not have changed in any way.
- Lock the oil drain valves against accidental opening.
- Protect the gear unit against falling objects.
- Check that the guards over rotating parts are securely fastened. Contact (accidental or deliberate) with rotating parts is not permitted.
- Perform potential equalisation in accordance with the applicable regulations and guidelines. If no threaded holes are available on the gear unit for an earth connection, please take suitable alternative measures. This work must always be done by specialist electricians.
- Protect the cable entries against penetrating moisture.
Further information

You will find further information about the gear unit and all mounted or separately supplied components in the operating instructions of the relevant components included in the complete documentation for the gear unit.

You can find additional technical specifications in the separate data sheet in the complete gear unit documentation.
5.9 Final work
Commissioning

6.1 Measures prior to commissioning

Take the following measures before commissioning the gear unit:

- Read and observe the operating instructions.
- Replace the screw plug with the air filter or the wet-air filter. Read operating instructions BA 7300 for further information.
- Gear units with backstop: Observe the appropriate measures prior to commissioning gear units equipped with backstop (Page 126).
- Gear unit with auxiliary drive: Observe the appropriate measures prior to commissioning gear units equipped with auxiliary drive (Page 126).
- Fill the gear unit with oil.
- Gear unit with oil supply system: Check that the oil supply system is working properly.
- Check the oil level.
- Check the gear unit for leaks.
- Check whether the monitoring devices are connected and switched on.
- Gear unit with oil supply system: Follow the instructions in Measures prior to commissioning with oil supply system (Page 128).
- Ensure that all pipes and components are filled with oil.

Further information

Further information about oil and replacement of air filters can be found in the operating instructions BA 7300 in the complete documentation for the gear unit.

Further information about individual components can be found in the operating instructions for the components in the complete documentation for the gear unit.
6.1.1 Gear unit with backstop

Take the following measures before commissioning the gear unit with backstop:

- Fill the amount of oil (specified on the plate attached to the gear unit) through the oil filling screw of the backstop. Use the same oil type and oil viscosity as for the gear unit itself.
- Check that the backstop can be easily rotated in the free-wheeling direction without having to exert excessive force. When doing this, observe the direction of rotation arrows at the gear unit.
- Before connecting the motor, identify the phase sequence of the three-phase power system using a phase sequence indicator. Connect the motor corresponding to the defined direction of rotation.

NOTICE

The backstop and the gear unit can be damaged

If you operate the gear unit adversely to the blocking direction of the backstop, then backstop and the gear unit can be damaged.

Do not operate the gear unit adversely to the blocking direction of the backstop. Observe the information on the plate attached to the gear unit.

6.1.2 Gear unit with auxiliary drive

Take the following measures before commissioning a gear unit with auxiliary drive:

- Please observe the information provided in the operating instructions for the auxiliary drive.
- Fill the overrunning clutch with oil via the intermediate flange. Use the same oil type and viscosity as for the gear unit itself.
- If required, release the brake on the auxiliary motor.
- Check that the overrunning clutch can be easily rotated in the free-wheeling direction without having to exert excessive force. To do this, rotate the motor shaft of the auxiliary drive in the opposite direction to the direction of rotation arrow to the gear unit.
- Before connecting the motor, identify the phase sequence of the three-phase power supply using a phase sequence indicator. Connect the motor corresponding to the defined direction of rotation.
- Electrically interlock the main motor and the auxiliary motor so that only one of the two motors can be switched on.
- For a maintenance drive: Check the shutdown function of the speed monitoring (Page 141).
NOTICE

The backstop and the gear unit can be damaged

If you operate the gear unit adversely to the blocking direction of the backstop, then backstop and the gear unit can be damaged.

Do not operate the gear unit adversely to the blocking direction of the backstop. Observe the information on the plate attached to the gear unit.

Further information

You can find additional information about the auxiliary drive in the auxiliary drive operating instructions in the complete documentation for the gear unit.

6.1.3 Oil level monitoring system

The gear unit can be equipped with an oil level monitoring system that uses a filling-level limit switch.

The oil level monitoring system has been designed to check the oil level when the gear unit is at a standstill before it starts.

Note

Connect the signal so that the drive motor cannot start when the "oil level too low" signal is active and so that an alarm is output. Bypass this signal in operation.

6.1.4 Gear units with cooling coil

Implement the following measures before commissioning the gear unit with cooling coil:

- Check that connecting pipes are firmly seated and tight.
- Open wide the shutoff valves in the coolant inflow and outflow lines of the coolant system.
- Make sure that the pressure in the cooling coil does not exceed the maximum permissible pressure.
- Make sure that the temperature of the cooling water is not higher than the maximum permissible value.

Further information

Further information about the cooling coil can be found in the data sheet and the list of equipment in the complete documentation for the gear unit.

Further information about connection dimensions and cooling water parameters can be found in the gear unit dimension drawing in the complete documentation for the gear unit.
Further information about the required cooling water flow rate and the maximum permissible inlet temperature can be found in the data sheet and the list of equipment in the complete documentation for the gear unit.

6.1.5 Gear unit with heating

Please observe the following measures to commission the gear unit with heating:

- Ensure that the heating elements are not exposed.
- Check the switching points of the temperature monitor.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosion and fire hazard</td>
</tr>
<tr>
<td>Exposed heating elements pose a fire hazard.</td>
</tr>
<tr>
<td>Do not put heating elements into service until you have checked that they are completely immersed in the oil bath.</td>
</tr>
</tbody>
</table>

Further information about heating elements can be found in the heating element operating instructions in the complete documentation for the gear unit.

6.1.6 Gear unit with oil supply system

Implement the following measures before commissioning the gear unit with oil supply system:

- Ensure that the maximum permissible pressure in the oil supply system components is not exceeded.
- Ensure that the maximum permissible temperature of the oil supply system components is not exceeded.
- Using the oil supply system, lubricate the gear unit for 2 minutes using a pre-lubrication phase. During this time, the rolling-contact bearings and gearing are supplied with sufficient oil for starting.
NOTICE

Damage to the gear unit caused by inadequate or complete loss of lubrication or insufficient cooling

The gear unit can sustain damage as a result of inadequate or complete loss of cooling or lubrication.
Open wide the shutoff valves in the coolant inflow and outflow lines of the coolant system.
Check that the connecting pipes are firmly seated and tight.

Further information

You will find information on the oil supply system in the data sheet, in the list of equipment and in the operating instructions for the oil supply system which are included in the complete documentation for the gear unit.

6.1.7 Filling lubricant into gear units with mounted backstop or auxiliary drive

Proceed as follows to fill lubricant into gear units with mounted backstop or auxiliary drive:

1. Check the rating plate or the additional plate to check the oil quantity and oil grade that need to be filled.
2. Remove the screw plugs from the overrunning clutch or backstop.
3. Pour in the lubricant through a filling filter with a filter mesh of maximum 25 μm.
4. Insert and tighten the screw plugs again.
5. Perform a function test on the overrunning clutch prior to commissioning.

6.2 Measures during commissioning

Please observe the following measures to commission the gear unit and document these:

- For gear units with oil supply system: Check that the oil supply system is working properly.
- Check the oil level.
- Measure the oil sump temperature (Page 135) after the gear unit has run in.
- Check the tightness of the shaft seal on the gear unit (Page 33).
- Check that no contact with rotating parts is possible.
- Check whether the shutoff valves are open.
 - Check that all of the oil drain valves are closed.
 - Ensure that all of the other shutoff valves are open.
- Check all the connection lines are securely tightened and leak-free.
For gear units with bearing monitoring by measuring the vibration: Measure the vibration levels of the rolling-contact bearings (Page 141) to create initial and comparison values.

For gear units with bearing monitoring using a Pt 100 resistance thermometer: Measure the temperature at the rolling-contact bearings (Page 142) to create initial and comparison values.

Bypass the pressure monitor signal for around 20 seconds during commissioning. This is necessary as the pressure in the gear unit must first stabilise. If the oil pressure has still not built up after 20 seconds, you can extend this period slightly in consultation with the manufacturer.

Further information
You can find additional information on the topic of oil in the operating instructions BA 7300, provided in the complete gear unit documentation.

Further information about the oil supply system can be found in the oil supply system operating instructions in the complete documentation for the gear unit.

6.2.1 Gear units with torque-limiting backstop

Damage by overheating
Overheating can result in damage to or destruction of the backstop.

Check the dimensions "x_{min." at regular 12-monthly intervals. The dimension must never be smaller than the minimum dimension "x_{min." specified on the rating plate of the backstop.

Further information
Further information about the torque-limiting backstop can be found in the torque-limiting backstop operating instructions provided in the complete gear unit documentation.
7.1 Operating data

Introduction

To ensure correct, trouble-free operation of the system, observe the operating data of the gear unit and, depending on the order specification, the data in the operating instructions for the oil supply system.

The valid operating data can be found in the annex Technical data (Page 157).

The following operating data apply to the oil:

Table 7-1 Operating data

<table>
<thead>
<tr>
<th>Average operating temperature</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90 °C</td>
<td>is applicable for mineral oil, API groups I or II and saturated synthetic ester</td>
</tr>
<tr>
<td></td>
<td>100 °C</td>
<td>is applicable for semi-synthetic oils, API group III, PAO and PG oils</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum operating temperature (for brief periods)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100 °C</td>
<td>is applicable for mineral oil, API groups I or II and saturated synthetic ester</td>
<td></td>
</tr>
<tr>
<td>110 °C</td>
<td>is applicable for semi-synthetic oils, API group III, PAO and PG oils</td>
<td></td>
</tr>
</tbody>
</table>

Water pressure of the cooling coil or the water-oil cooler | < 8.0 bar |

You will find information about the oil pressure in the data sheet, in the list of equipment or in the dimension drawing in the complete documentation for the gear unit.

Further information

Further information about the technical data of the gear unit can be found in the data sheet and the list of equipment in the complete documentation for the gear unit.

7.2 Irregularities in operation

Introduction

Switch off the drive assembly immediately if it exhibits irregular behaviour during operation.

A few irregularities are listed below as examples:

- Oil temperature exceeds the maximum permissible value
- Alarm tripped by the pressure monitor in the oil cooling system or oil supply system
- Unusual operating noise
NOTICE
Faults can cause damage to the gear unit
The gear unit might sustain damage if it is not shut down when a fault occurs.
Switch off the drive assembly immediately if any fault condition develops.

Rectifying irregularities in operation
Proceed as follows to rectify any irregularities in operation:
1. Switch off the drive assembly if it exhibits irregular behaviour during operation.
2. Refer to the Fault information (Page 142) to find the cause of the fault.
3. If you still cannot determine the fault cause, contact Siemens Customer Services (Page 149).

7.3 Taking the unit out of service
If you take the unit out of service for a prolonged period, you must take the following measures depending on the length of time that the gear unit will remain out of service:

- Switch off the drive assembly.
- For gear units with a cooling coil or a water-oil cooler:
 - If there is a risk of frost or the unit is to be taken out of service for a prolonged period, drain the water from the cooling coil or the water-oil cooler and remove residual water with compressed air.
 - Close the shutoff valves for the cooling water inlet and drain lines.
- Take measures to preserve the gear unit if it is to be out of service for a prolonged period. Follow the preservation procedure described in operating instructions BA 7300. Oil filling must not be used as a means of preserving the interior of gear units with an oil retaining pipe or grease-lubricated rolling-contact bearings.
- For gear units with a separate oil supply system or separate oil cooling system, perform the following steps before you preserve the gear unit:
 - Disconnect the gear unit from the separate oil supply system or separate oil cooling system.
 - Seal the openings in the gear unit, separate oil supply system and separate oil cooling system so that they are air-tight.
8.1 General maintenance information

The operator must ensure compliance with the stipulated time limits. This also applies if the maintenance activities are included in the operator’s internal maintenance schedules.

The gear unit could be damaged if the stipulated time limits for maintenance and servicing are not observed.

The time limits stipulated in the maintenance schedule are largely dependent on the conditions of use of the gear unit. For this reason, it is only possible to state average time limits here. These refer to the following conditions of use:

- Daily operating time 24 h
- Duty cycle "ED" 100%
- Gear unit input speed 1500 rpm
- Average oil temperature in the oil sump (see operating instructions BA 7300)

WARNING

Danger to life due to live system

Working on a gear unit while it is in operation is hazardous and can result in potentially fatal injuries.

Always shut down the gear unit and any oil supply system (whether separate or mounted on the gear unit) before you carry out any work. Take measures to prevent the accidental restarting of the drive assembly. Display a warning notice that clearly states that work is being carried out on the gear unit.
8.2 Maintenance schedule

Maintenance and servicing work

The following table provides an overview of all maintenance and servicing work which you are required to perform continuously or at regular intervals.

<table>
<thead>
<tr>
<th>Intervals and time limits</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>As required</td>
<td>Replace the wet-air filter</td>
</tr>
<tr>
<td></td>
<td>Clean the air filter</td>
</tr>
<tr>
<td></td>
<td>Clean the fan and gear unit</td>
</tr>
<tr>
<td>Daily</td>
<td>Check the oil temperature</td>
</tr>
<tr>
<td></td>
<td>Check the oil pressure (if pressure lubrication is fitted)</td>
</tr>
<tr>
<td></td>
<td>Check for changes in the gear unit noise</td>
</tr>
<tr>
<td></td>
<td>Check the water pressure</td>
</tr>
<tr>
<td>Monthly and prior to every start-up</td>
<td>Check for leaks</td>
</tr>
<tr>
<td></td>
<td>Check the oil level</td>
</tr>
<tr>
<td>400 operating hours after commissioning</td>
<td>Check the water content of the oil</td>
</tr>
<tr>
<td></td>
<td>Change the oil (or depending on results of the oil sample test)</td>
</tr>
<tr>
<td></td>
<td>Check that all of the fastening bolts are tight</td>
</tr>
<tr>
<td>Every 3 months</td>
<td>Check the speed monitoring of the auxiliary drive</td>
</tr>
<tr>
<td></td>
<td>Check the auxiliary drive</td>
</tr>
<tr>
<td></td>
<td>Clean the oil filter</td>
</tr>
<tr>
<td></td>
<td>Clean the air filter</td>
</tr>
<tr>
<td></td>
<td>Clean the venting screw</td>
</tr>
<tr>
<td>Every 3000 operating hours</td>
<td>Measure the vibration levels of the rolling-contact bearings</td>
</tr>
<tr>
<td>Every 3000 operating hours, at least every 6 months</td>
<td>Regrease taconite seals</td>
</tr>
<tr>
<td></td>
<td>Regrease Tacolab seals</td>
</tr>
<tr>
<td>At least every 6 months (see specification on plate at lubrication point)</td>
<td>Replenish grease in grease-lubricated rolling-contact bearings</td>
</tr>
<tr>
<td>Every 5000 operating hours, at least every 10 months</td>
<td>Replenish grease in the oil retaining pipe</td>
</tr>
<tr>
<td>Every 12 months</td>
<td>Check the friction linings of the torque-limiting backstop</td>
</tr>
<tr>
<td></td>
<td>Inspect the hose lines</td>
</tr>
<tr>
<td></td>
<td>Inspect the shrink disk</td>
</tr>
<tr>
<td></td>
<td>Check the water content of the oil</td>
</tr>
</tbody>
</table>
Intervals and time limits

<table>
<thead>
<tr>
<th>intervals and time limits</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every 10,000 operating hours, at least every 2 years</td>
<td>Change the oil if using mineral oil of API Group I or II or saturated synthetic esters (or depending on the result of the oil sample test)</td>
</tr>
<tr>
<td></td>
<td>Check the air-oil cooler (the same time as you change the oil)</td>
</tr>
<tr>
<td></td>
<td>Check the water-oil cooler (the same time as you change the oil)</td>
</tr>
<tr>
<td>Every 2 years</td>
<td>Carry out a general inspection of the gear unit</td>
</tr>
<tr>
<td></td>
<td>Check the cooling coil</td>
</tr>
<tr>
<td></td>
<td>Check that all of the fastening bolts are tight</td>
</tr>
<tr>
<td></td>
<td>Clean the fan and gear unit</td>
</tr>
<tr>
<td>Every 20,000 operating hours, at least every 4 years</td>
<td>Change the oil if using semi-synthetic oil of API Group III, PAO or PG oil (or depending on the result of the oil sampling)</td>
</tr>
<tr>
<td>6 years after the specified date of manufacture</td>
<td>Change the hoses</td>
</tr>
</tbody>
</table>

Further information

Further information about additional maintenance and servicing work can be found in the separate data sheet in the complete documentation for the gear unit.

Further information about installed components can be found in the operating instructions for the components in the complete documentation for the gear unit.

8.3 Maintenance and servicing work

Introduction

You can find maintenance and servicing measures relating to gear unit lubrication and preservation, which are not provided in this chapter, in BA 7300 in the complete gear unit documentation.

8.3.1 Checking the oil temperature

Damage to the gear unit due to excessively high oil sump temperatures.

The gear unit can sustain damage due to inadequate lubrication if you allow it to operate at oil sump temperatures above the maximum permissible temperature.

Do not operate the gear unit above the maximum permissible oil sump temperature.
Servicing

8.3 Maintenance and servicing work

Procedure

Proceed as follows to check the oil temperature:

1. Allow the gear unit to reach its normal operating temperature.
2. Operate the gear unit with the maximum driven machine power.
3. Measure the temperature of the oil in the oil sump.
4. Compare the measured value with the maximum permissible oil temperature (Page 131).
5. Immediately stop the gear unit if the maximum permissible oil temperature is exceeded. Contact Siemens Customer Services.

8.3.2 **Filling the backstop with oil**

Oil type and filling filter

When filling the backstop with oil, observe the following points:

- Use the same oil type and oil viscosity as for the gear unit itself.
- Use a filling filter with the same filter mesh size as for the gear unit itself.

Procedure

Proceed as follows to fill the backstop with oil:

1. Clean the oil filling point of the backstop.
2. Open the oil filling screw of the backstop.
3. Fill the amount of oil that is specified on the backstop plate. Use the same oil type and oil viscosity as for the gear unit itself.
 Use a filling filter with the same filter mesh size as for the gear unit itself.
4. Screw in the oil filling screw.

8.3.3 **Checking the friction linings of the torque-limiting backstop**

Introduction

The friction linings of the torque-limiting backstop can wear, especially for frequent slippage.
The diagram below shows the torque-limiting backstop:

1. Guide screw with spring
2. Locking wire
3. Inner ring of backstop
4. Outer ring of backstop
5. Friction lining
6. Cage with sprags
7. Shaft (intermediate flange)

Figure 8-1 Torque limiting backstop

Procedure

Proceed as follows to check the friction linings of the torque-limiting backstop:

1. Clean the measurement location at the backstop.
2. Measure dimension "x".
3. If dimension "x" falls below limit value "x_{min}" stamped on the backstop type plate, then you must replace the torque-limiting backstop. The gear unit must cease operation immediately.

Note

Loss of warranty

The warranty becomes null and void if you remove or damage the locking wire at the guide screws of the springs.

Do not change the slipping torque setting. The slipping torque was set to the correct value in the factory.

Further information

Further information about the torque-limiting backstop can be found in the torque-limiting backstop operating instructions provided in the complete gear unit documentation.
8.3.4 Filling the overrunning clutch of the auxiliary drive with oil

Proceed as follows to fill the overrunning clutch with oil:

1. Clean the oil filling point of the overrunning clutch.
2. Open the oil filling screw of the overrunning clutch.
3. Fill the amount of oil that is specified on the plate on the overrunning clutch. Use the same oil type and oil viscosity as for the gear unit itself. Use a filling filter with the same filter mesh size as the filter used to fill the gear unit.
4. Screw in the oil filling screw.

8.3.5 Checking the auxiliary drive

Follow the operating instructions of the auxiliary drive used that are included in the complete documentation for the gear unit.

8.3.6 Cleaning the fan and gear unit

Introduction

The gear unit can sustain damage due to inadequate cooling if you operate it with a damaged or soiled fan. Depending on the conditions at the site of installation, it may therefore be necessary to clean the fan and gear unit more frequently than stipulated in the maintenance schedule.

Take appropriate measures to protect shaft seals from coming into contact with cleaning agents.

Procedure

Proceed as follows to clean the fan and gear unit:

1. Remove the air guide cover.
2. Use a hard brush to remove any stubborn dirt from the impeller, air guide cover and protective grille. Never use a high-pressure cleaning device.
3. Treat any areas of corrosion.
4. Reinstall the air guide cover.
 Make sure that the air guide cover is correctly fastened. Make sure that there is no contact between the fan and the air guide cover.
8.3.7 Checking the cooling coil

Introduction

A soiled cooling coil can cause damage to the gear unit. It is therefore important to check the cooling coil regularly.

Procedure

To check the cooling coil, proceed as follows:

1. Shut off the cooling water supply.
2. Disconnect the cooling water inlet and drain lines from the cooling coil.
3. Inspect the inner surface of the cooling coil for deposits.
 - If you discover that there are heavy deposits inside the cooling coil, arrange for the cooling water or the deposits to be analysed. Analysis services of this kind are offered by specialist chemical cleaning companies. These companies also sell special cleaning agents for removing deposits.
 - Before you use a cleaning agent, check whether it is suitable for use on the cooling coil materials. You must consult Siemens Customer Services. Carefully read the instructions for use supplied by the manufacturer before using different kinds of cleaning agent.
 - Replace especially severely soiled cooling coils by new ones. Please consult Siemens Customer Services (Page 149) for further advice.
4. Reconnect the cooling water inlet and drain lines to the cooling coil.

NOTICE

Build-up of heat due to soiled cooling coils
Overheating can damage the gear unit.
When the cooling coil is severely soiled, it can no longer be guaranteed to cool the gear unit effectively. In such cases, you must chemically clean the inside of the cooling coil or have it replaced with a new one.

8.3.8 Inspecting the shrink disk

Introduction

The shrink disk inspection is limited to a visual assessment of its condition.
Aspects of the inspection

Observe the following points when inspecting the shrink disk:

- Loose bolts
- Damage due to use of force
- Inner ring resting flush against the outer ring

Further information

Further information about the shrink disk can be found in the shrink disk operating instructions in the complete documentation for the gear unit.

8.3.9 Cleaning the coarse filter

Procedure

To clean the coarse filter, proceed as follows:

1. Inspect the coarse filter.
2. Remove the drain plug.
3. Pull out the strainer and remove particles of dirt.
4. Replace any strainers or sealing rings that are defective.

Further information

You can find additional information about the coarse filter in the coarse filter operating instructions provided in the complete gear unit documentation.

You can find additional technical data in the separate data sheet and in the list of equipment provided in the complete gear unit documentation.

8.3.10 Cleaning the double change-over filter

Procedure

To clean the double change-over filter, proceed as follows:

1. Inspect the double change-over filter.
2. Follow the operating instructions for the double change-over filter.

Further information

You can find additional information about the double change-over filter in the double change-over filter operating instructions provided in the complete gear unit documentation.
You can find additional technical data in the separate data sheet and in the list of equipment provided in the complete gear unit documentation.

8.3.11 Checking the speed monitoring of the auxiliary drive

Procedure

Proceed as follows to check the speed monitoring of the auxiliary drive:

1. Switch on the auxiliary drive.
2. Check whether the speed monitor switches.

Result

If the speed monitor does not switch, repair it or if necessary replace it.

Further information

You can find additional information on the auxiliary drive in the auxiliary drive operating instructions, provided in the complete gear unit documentation.

8.3.12 Measuring the vibration levels of the rolling-contact bearings

Procedure

Proceed as follows to measure the vibration levels of the rolling-contact bearings:

1. Measure the vibrations at the rolling-contact bearings.
2. Document the measurement results.
3. Compare the measured values with the comparison values that were documented when commissioning the gear unit.
4. Replace defective rolling-contact bearings.
5. Archive the report together with these instructions.

Further information

You can find additional information on measuring the vibration levels at rolling-contact bearings in the operating instructions of the measurement sensor provided in the complete gear unit documentation.
8.3.13 Measuring the temperature at the rolling-contact bearings

Procedure

Proceed as follows to measure the temperature at the rolling-contact bearings:

1. Measure the temperature at the rolling-contact bearings.
2. Document the measurement results.
3. Compare the measured values with the comparison values that were documented when commissioning the gear unit.
4. Archive the report together with these instructions.
5. Replace defective rolling-contact bearings.

Further information

Further information about measuring the temperature at the rolling-contact bearings can be found in the Pt 100 resistance thermometer operating instructions in the complete documentation for the gear unit.

8.3.14 Check that all of the fastening bolts are tight

Note the following points when checking that the fastening bolts are tight:

- Observe the data regarding connection classes (Page 120), preload forces and tightening torques (Page 120).
- Replace any bolts that are no longer fit for use by bolts of the same strength class and type.

8.3.15 General inspection of the gear unit

Arrange for Siemens Customer Services to perform a general inspection on the gear unit. Thanks to their experience, these engineers are best placed to assess which gear unit components need to be replaced.

8.3.16 Final work

After you have finished all the work listed in the maintenance schedule, replace any bolts that are no longer fit for use by bolts of the same strength class and type.

8.4 Possible faults

The faults listed below are only intended as a troubleshooting guide.
If any faults occur while the unit is still under warranty, do not allow anyone except Siemens Customer Services to attempt a repair.

Even after the warranty period has expired, you should still arrange for faults to be rectified by Siemens Customer Services.

Note

Loss of warranty

You will invalidate the warranty for the gear unit if you modify it in any way without seeking the approval of Siemens beforehand, or if you do not use original spare parts.

Only use original spare parts from Siemens. Always arrange for Siemens Customer Services to repair any faults that develop while the unit is still under warranty.

Possible faults and their rectification

The following table provides you with an overview of possible faults and indicates how they can be rectified.

<table>
<thead>
<tr>
<th>Possible faults</th>
<th>Causes</th>
<th>Possible remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking function of backstop has failed</td>
<td>Damaged backstop</td>
<td>• Contact Customer Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the backstop and replace if necessary</td>
</tr>
<tr>
<td>Pressure switch triggers alarm</td>
<td>Oil pressure has dropped below minimum value</td>
<td>• Check the oil level at room temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Top up with oil if necessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the oil pump</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If required, replace the oil pump</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the oil filter and coarse filter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If required, replace the oil filter or clean the coarse filter</td>
</tr>
<tr>
<td>Grease escaping at the output shaft</td>
<td>Defective rotary shaft sealing rings</td>
<td>• Inspect the rotary shaft seals and replace if necessary</td>
</tr>
<tr>
<td>Noise</td>
<td>Damage to the gear teeth</td>
<td>• Contact Customer Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inspect the toothed components</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If necessary, replace damaged components</td>
</tr>
<tr>
<td>The bearing play is excessive.</td>
<td></td>
<td>• Contact Customer Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adjust bearing play</td>
</tr>
<tr>
<td>Defective rolling-contact bearings</td>
<td></td>
<td>• Contact Customer Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Replace defective rolling-contact bearings</td>
</tr>
<tr>
<td>Overrunning noises caused by operation on frequency converter</td>
<td></td>
<td>• Contact Customer Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the closed-loop motor control system</td>
</tr>
<tr>
<td>Gear unit fastening has worked loose</td>
<td></td>
<td>• Tighten bolts and nuts to the specified tightening torque</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Replace damaged bolts and nuts</td>
</tr>
</tbody>
</table>
8.4 Possible faults

<table>
<thead>
<tr>
<th>Possible faults</th>
<th>Causes</th>
<th>Possible remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer surface of gear unit soiled with oil</td>
<td>Inadequate sealing of the housing cover or joints</td>
<td>Seal housing cover or joints</td>
</tr>
<tr>
<td></td>
<td>Labyrinth seals soiled with oil, incorrect transport position</td>
<td>Check oil filling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clean the labyrinths</td>
</tr>
<tr>
<td>Main drive motor does not start</td>
<td>Motor direction of rotation incorrect</td>
<td>Change polarity of motor</td>
</tr>
<tr>
<td></td>
<td>Backstop cage with sprags incorrectly installed or defective</td>
<td>Contact Customer Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Install the backstop cage, rotated through 180° - or replace</td>
</tr>
<tr>
<td></td>
<td>Overrunning clutch blocked</td>
<td>Contact Customer Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Install a new overrunning clutch</td>
</tr>
<tr>
<td></td>
<td>Overrunning clutch cage with sprags incorrectly installed and/or defective</td>
<td>Contact Customer Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Install the overrunning clutch cage, rotated through 180° - or replace</td>
</tr>
<tr>
<td>Main drive motor can start while the auxiliary drive is operational</td>
<td>Defective electrical interlocking between the main and auxiliary motor</td>
<td>Check the connections</td>
</tr>
<tr>
<td></td>
<td>Defective speed monitoring</td>
<td>If necessary, replace defective devices</td>
</tr>
<tr>
<td>Auxiliary drive motor does not start</td>
<td>Overload at the output</td>
<td>Reduce the load at the output</td>
</tr>
<tr>
<td></td>
<td>Defective auxiliary drive motor</td>
<td>Repair or replace the motor</td>
</tr>
<tr>
<td></td>
<td>Motor brake not released</td>
<td>Correct the electrical connection of the motor brake</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If required, replace the motor brake</td>
</tr>
<tr>
<td>The auxiliary drive motor starts, the main gear unit output shaft does not turn</td>
<td>Motor direction of rotation incorrect</td>
<td>Change polarity of motor</td>
</tr>
<tr>
<td></td>
<td>Overrunning clutch cage with sprags incorrectly installed</td>
<td>Contact Customer Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Install the overrunning clutch cage, rotated through 180° - or replace</td>
</tr>
<tr>
<td></td>
<td>Defective overrunning clutch</td>
<td>Contact Customer Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Install a new overrunning clutch</td>
</tr>
<tr>
<td>Leakage</td>
<td>Labyrinth seals soiled with oil, incorrect transport position</td>
<td>Check oil filling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clean the labyrinths</td>
</tr>
<tr>
<td></td>
<td>Inadequate sealing of the housing cover or joints</td>
<td>Check the seals and replace if necessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seal housing cover or joints</td>
</tr>
<tr>
<td></td>
<td>Defective rotary shaft sealing rings</td>
<td>Check the rotary shaft sealing rings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace, if necessary</td>
</tr>
<tr>
<td>Wet-air filter is severely discoloured</td>
<td>Wet-air filter is spent</td>
<td>Replace the wet-air filter</td>
</tr>
<tr>
<td>Wet-air filter is becoming discoloured from the top downwards</td>
<td>Water in the oil</td>
<td>Take test tube sample to examine oil condition for water penetration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Have the oil examined by a chemical lab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change the oil if necessary</td>
</tr>
<tr>
<td>Possible faults</td>
<td>Causes</td>
<td>Possible remedies</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Oil is foaming in the gear unit</td>
<td>Preservation agent not completely drained off</td>
<td>• Change the oil</td>
</tr>
<tr>
<td></td>
<td>Oil supply system left in operation for too long at low temperatures</td>
<td>• Switch off the oil supply system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Degas the oil</td>
</tr>
<tr>
<td></td>
<td>Gear unit too cold in operation</td>
<td>• Switch off the gear unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Degas the oil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Start up without cooling water during cold restart</td>
</tr>
<tr>
<td>Water in the oil</td>
<td></td>
<td>• Take test tube sample to examine oil condition for water penetration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Have the oil examined by a chemical lab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Change the oil if necessary</td>
</tr>
<tr>
<td>Oil defoamer has run out</td>
<td></td>
<td>• Examine the oil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Change the oil if necessary</td>
</tr>
<tr>
<td>Unsuitable mixture of oils</td>
<td></td>
<td>• Examine the oil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Change the oil if necessary</td>
</tr>
<tr>
<td>Oil escaping from the gear unit</td>
<td>Inadequate sealing of the housing cover or joints</td>
<td>• Check the seals and replace if necessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Seal housing cover or joints</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the compression seals and retighten screws if necessary</td>
</tr>
<tr>
<td>Leaking pipes</td>
<td></td>
<td>• Check the pipes, and replace or seal if necessary</td>
</tr>
<tr>
<td>Oil supply system malfunction</td>
<td>-</td>
<td>• Follow the operating instructions for the oil supply system</td>
</tr>
</tbody>
</table>
8.4 Possible faults

<table>
<thead>
<tr>
<th>Possible faults</th>
<th>Causes</th>
<th>Possible remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated temperature during operation</td>
<td>Oil level in the gear unit housing too high</td>
<td>• Check the oil level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Correct the oil level if necessary</td>
</tr>
<tr>
<td></td>
<td>Oil is too old</td>
<td>• Find out when the last oil change was done</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Change the oil if necessary</td>
</tr>
<tr>
<td></td>
<td>Oil is severely contaminated</td>
<td>• Change the oil</td>
</tr>
<tr>
<td></td>
<td>Oil supply system or cooling coil defective</td>
<td>• Check the oil supply system or cooling coil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Replace defective components if necessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Follow the operating instructions for the oil supply system</td>
</tr>
<tr>
<td>Gear unit with water-oil cooler: Coolant flow too low or too high</td>
<td></td>
<td>• Adjust the valves at the supply and return lines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the water-oil cooler for free flow</td>
</tr>
<tr>
<td>Gear unit with air-oil cooler: Inadequate air flow</td>
<td></td>
<td>• Clean the air-oil cooler</td>
</tr>
<tr>
<td>Gear unit with air-oil cooler: Cooler block soiled</td>
<td></td>
<td>• Clean the cooler block</td>
</tr>
<tr>
<td>Gear unit with oil cooling system: Inadequate oil flow through the oil cooler</td>
<td></td>
<td>• Check the oil filter and coarse filter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If required, replace the oil filter or clean the coarse filter</td>
</tr>
<tr>
<td>Gear units with cooling coil: Deposits in the cooling coil</td>
<td></td>
<td>• Clean, or if necessary, replace the cooling coil</td>
</tr>
<tr>
<td>Gear unit with fan: Air intake opening in air guide cover or gear unit housing is soiled</td>
<td></td>
<td>• Clean the air guide cover and gear unit housing</td>
</tr>
<tr>
<td>Coolant temperature is too high</td>
<td></td>
<td>• Check the temperature; correct if necessary</td>
</tr>
<tr>
<td>Defective oil pump</td>
<td></td>
<td>• Check the oil pump function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If required, repair or replace the oil pump</td>
</tr>
<tr>
<td>Elevated temperature at bearing points</td>
<td>Oil level in the gear unit housing too low or too high</td>
<td>• Check the oil level at room temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Correct the oil level if necessary</td>
</tr>
<tr>
<td></td>
<td>Oil is too old</td>
<td>• Find out when the last oil change was done</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Change the oil if necessary</td>
</tr>
<tr>
<td>Oil supply system defective</td>
<td></td>
<td>• Check the oil supply system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Replace defective components if necessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Follow the operating instructions for the oil supply system</td>
</tr>
<tr>
<td>Defective rolling-contact bearings</td>
<td></td>
<td>• Contact Customer Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inspect the rolling-contact bearings and replace if necessary</td>
</tr>
<tr>
<td>Defective oil pump</td>
<td></td>
<td>• Check the oil pump function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If required, repair or replace the oil pump</td>
</tr>
<tr>
<td>Elevated temperature at backstop</td>
<td>Damaged backstop</td>
<td>• Contact Customer Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the backstop and replace if necessary</td>
</tr>
<tr>
<td>Possible faults</td>
<td>Causes</td>
<td>Possible remedies</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Increased vibration amplitude at the bearing points | Defective rolling-contact bearings | • Contact Customer Services
• Inspect the rolling-contact bearings and replace if necessary |
| Gear wheels defective | | • Contact Customer Services
• Inspect the gear wheels and replace if necessary |
| Contamination indicator of the double change-over filter triggers an alarm | Double change-over filter clogged | • Change over the double change-over filter corresponding to the separate operating instructions
• Clean the filter element |
| Water in the oil | Oil supply system or cooling coil defective | • Check the oil supply system or cooling coil
• Replace defective components if necessary
• Follow the operating instructions for the oil supply system |
| Engine room fan is blowing cold air onto gear unit: Water condenses | | • Install suitable thermal insulation to protect gear unit housing
• Close the air outlet or change the direction of the air outlet using structural measures. |
| Climatic conditions | | • Contact Customer Services
• Use wet-air filter if necessary |
| Oil foams in the oil sump | | • Take test tube sample to examine oil condition for water penetration
• Have the oil examined by a chemical lab |
8.4 Possible faults
Service & Support

Contact

When ordering spare parts, requesting a customer service technician or in the case of technical queries, please contact our factory or one of our customer service addresses:

Siemens Industriegetriebe GmbH
Thierbacher Strasse 24
09322 Penig
Germany
Tel.: +49 (0)37381 / 61-0
Fax: +49 (0)37381 / 80286
Disposal

Disposal of the gear unit
When disposing of the gear unit after its useful life, please observe the following measures:

- Remove operating oil, preservative agents and coolant from the gear unit and dispose of it according to regulations.
- Dispose of the gear unit parts according to applicable national regulations or recycle them.

Environmental protection
Observe the following environmental protection measures for disposal:

- Dispose of or recycle packaging material according to applicable national regulations.
- When changing the oil, collect the used oil in suitable containers. Use oil-binding agents to clean up any oil spillages immediately.
- Store preservative agents separately from used oil.
- Dispose of used oil, preservative agents, oil binding agents and oil-soaked cloths according to the applicable environmental protection regulations.
By stocking the most important spare parts at the installation site you can ensure that the gear unit is ready for use at any time.

Note

Damage to the gear unit due to use of unsuitable spare parts

Only use original spare parts from Siemens. Siemens shall not accept any warranty claims for spare parts that are not supplied by Siemens.

Other spare parts are not tested and approved by Siemens. Non-approved spare parts may possibly change the design characteristics of the gear unit and thus impair its active or passive safety.

Siemens will accept no liability or warranty whatsoever for damage occurring as a result of the use of non-approved spare parts. The same applies to any accessories which were not supplied by Siemens.

The contact address of Siemens Customer Services can be found under Service & Support (Page 149).

Information required when ordering spare parts

To order spare parts, refer to the spare-parts list. Only use spare parts that are supplied by Siemens.

When ordering spare parts, please provide the following information:

- Order number with item
- Type and size
- Part number
- Quantity
Quality documents

A.1 Declaration of Incorporation
Declaration of incorporation

Company name and full address of the manufacturer:
Siemens Industriegetriebe GmbH
Thierbacher Straße 24
09322 Penig
Deutschland – Germany

Name and address of the person, authorised to compile the relevant technical documentation:
Jens Klein
Siemens Industriegetriebe GmbH
Thierbacher Straße 24
09322 Penig
Deutschland – Germany

Description and identification of the partly completed machinery:
Gear Unit
H.SH, H.VH, H.HH, H.DH, H.KH, H.FH, H.HM,
H.DM, H.XM, H.FM, H.PH, B.SH, B.VH, B.HH,
B.DH, B.KH, B.FH, B.HM, B.DM, B.KM, B.FM,
T.SH, T.HH, T.KH, T.DH, T.FH
Sizes 1 to 22
for driving machines

The following "Essential health and safety requirements" are applied and are met:
1.1, 1.1.2, 1.1.3, 1.1.5; 1.2.6; 1.3.1 - 1.3.4, 1.3.6 - 1.3.8.1; 1.4.1, 1.4.2.1; 1.5.1, 1.5.2,
1.5.4 - 1.5.11, 1.5.13; 1.6.1.1, 1.6.2; 1.7.1 - 1.7.2, 1.7.4 - 1.7.4.3

The special technical documents described in Annex VII part B have been prepared.

The manufacturer undertakes, in response to a reasoned request by national authorities, to
transmit in electronic form relevant information about the partly completed machinery.

The partly completed machinery must not be put into service until it has been established that
the machinery into which the partly completed machinery is to be incorporated has been
declared to be in conformity with the provisions of Directive 2006/42/EC, as appropriate.

Siemens Industriegetriebe GmbH

Penig, 2016-03-23 i.V.
Jens Klein, Head of PD MD AP PNG

Penig, 2016-03-23 i.V.
Tobias Bronsert, Head of PD MD AP PNG BA

Translation of the original declaration of incorporation
B.1 General technical data

Rating plate

The gear unit rating plate contains the most important technical data.

1. Company logo
2. Serial no.: production plant code/order no. item ser. no./year of manufacture
3. Total weight in kg
4. For special information
5. Type, size
6. Power rating P_2 in kW or torque T_2 in Nm
7. Speed n_1
8. Speed n_2
9. Oil data: Oil type, oil viscosity, oil quantity
10. Numbers of operating instructions
11. For special information
12. Manufacturer and place of manufacture
13. Country of origin

The limits of the intended use of the gear unit are defined on the basis of these data and the contractual agreements concerning the gear unit concluded between Siemens and the customer.

Further information

Further information about these technical data can be found in the separate data sheet and the dimension drawings in the complete documentation for the gear unit.

Further information about all major accessories including their technical data and control instructions can be found in the order-specific list of equipment in the complete documentation for the gear unit.
Example code

The following is an example of the code printed in line 5 of the rating plate and explains the meaning of the individual letters and numbers.

<table>
<thead>
<tr>
<th>B</th>
<th>3</th>
<th>S</th>
<th>H</th>
<th>13</th>
</tr>
</thead>
</table>

- **Size**: 1 ... 22
- **Mounting**:
 - H = Horizontal
 - M = Horizontal version without foot (size 13 and larger)
- **Output shaft version**:
 - S = Solid shaft
 - V = Solid shaft, reinforced
 - H = Hollow shaft with parallel keyway
 - D = Hollow shaft for shrink disk
 - K = Hollow shaft with spline according to standard "DIN 5480"
 - F = Flange shaft
 - P = Paper-making machine version
- **No. of stages**: 1, 2, 3 or 4
- **Gear unit type**:
 - H = Helical gear unit
 - B = Bevel helical gear unit
 - T = (2, 3 or 4 stages only)
 - Bevel helical gear unit with split housing (sizes 4 ... 12)

Further information

You can find additional information on the weights and the enveloping surface sound pressure levels in chapters Weights (Page 160) and Enveloping surface sound pressure level (Page 163).

Further information about these technical data can be found in the separate data sheet and the dimension drawings in the complete documentation for the gear unit.

B.2 Ambient temperature

The gear unit may be operated in an ambient temperature range from -20 °C to 40 °C. By applying various suitable measures, the gear unit can be used in the ambient temperature range extending from -40 °C up to 60 °C. However, this must always be authorised by Siemens and specified in the order text.

Storing the gear unit

Do not expose the gear unit to harmful effects such as aggressive chemical products, environments with high levels of air pollution or humidity, or ambient temperatures below 0 °C or above 40 °C range.
The gear unit is available in the following types.

H.SH, H.VH, H.PH

B.SH, B.VH, T.SH

H.HH, H.DH, H.KH

B.HH, B.DH, B.KH, T.HH, T.DH, T.KH

H.FH

B.FH, T.FH

H.HM, H.DM, H.KM

B.HM, B.DM, B.KM

H.FM

B.FM

Further information

Further information and a detailed illustrated description of the gear unit can be found in the dimension drawing in the complete documentation for the gear unit.
B.4 Weights

The precise weights are specified in the dimension drawings in the complete documentation or on the rating plate.

All weight specifications refer to units without oil filling or mounted components.

Refer to the following tables for the weights (approximate values, in kg) of the gear units (Page 159):

Table B-1 Weights

<table>
<thead>
<tr>
<th>Type</th>
<th>Gear unit size</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1SH</td>
<td></td>
<td>55</td>
<td>-</td>
<td>128</td>
<td>-</td>
<td>302</td>
<td>-</td>
<td>547</td>
<td>-</td>
<td>862</td>
<td>-</td>
<td>1 515</td>
<td>-</td>
</tr>
<tr>
<td>H2PH</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>340</td>
<td>-</td>
<td>550</td>
<td>-</td>
<td>860</td>
<td>-</td>
<td>1 360</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H2.H</td>
<td></td>
<td>-</td>
<td>-</td>
<td>115</td>
<td>190</td>
<td>300</td>
<td>355</td>
<td>505</td>
<td>590</td>
<td>830</td>
<td>960</td>
<td>1 335</td>
<td>1 615</td>
</tr>
<tr>
<td>H2.M</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H3.H</td>
<td></td>
<td>-</td>
<td>-</td>
<td>320</td>
<td>365</td>
<td>540</td>
<td>625</td>
<td>875</td>
<td>1 020</td>
<td>1 400</td>
<td>1 675</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H3.M</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H4.H</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>550</td>
<td>645</td>
<td>875</td>
<td>1 010</td>
<td>1 460</td>
</tr>
<tr>
<td>H4.M</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>B2.H</td>
<td></td>
<td>50</td>
<td>82</td>
<td>140</td>
<td>235</td>
<td>360</td>
<td>410</td>
<td>615</td>
<td>700</td>
<td>1 000</td>
<td>1 155</td>
<td>1 640</td>
<td>1 910</td>
</tr>
<tr>
<td>B2.M</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>B3.H</td>
<td></td>
<td>-</td>
<td>-</td>
<td>130</td>
<td>210</td>
<td>325</td>
<td>380</td>
<td>550</td>
<td>635</td>
<td>890</td>
<td>1 020</td>
<td>1 455</td>
<td>1 730</td>
</tr>
<tr>
<td>B3.M</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>B4.H</td>
<td></td>
<td>-</td>
<td>-</td>
<td>335</td>
<td>385</td>
<td>555</td>
<td>655</td>
<td>890</td>
<td>1 025</td>
<td>1 485</td>
<td>1 750</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>B4.M</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>T3.H</td>
<td></td>
<td>-</td>
<td>-</td>
<td>210</td>
<td>310</td>
<td>360</td>
<td>540</td>
<td>620</td>
<td>850</td>
<td>1 000</td>
<td>1 410</td>
<td>1 690</td>
<td>-</td>
</tr>
<tr>
<td>T3.M</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>190</td>
<td>290</td>
<td>335</td>
<td>500</td>
<td>580</td>
<td>810</td>
<td>965</td>
<td>1 340</td>
<td>1 630</td>
</tr>
</tbody>
</table>

Table B-2 Weights

<table>
<thead>
<tr>
<th>Type</th>
<th>Gear unit size</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1SH</td>
<td></td>
<td>2 395</td>
<td>-</td>
<td>3 200</td>
<td>-</td>
<td>4 250</td>
<td>-</td>
<td>5 800</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H2PH</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>H2.H</td>
<td></td>
<td>2 000</td>
<td>2 570</td>
<td>3 430</td>
<td>3 655</td>
<td>4 650</td>
<td>5 125</td>
<td>6 600</td>
<td>7 500</td>
<td>8 900</td>
<td>9 600</td>
</tr>
<tr>
<td>H2.M</td>
<td></td>
<td>1 880</td>
<td>2 430</td>
<td>3 240</td>
<td>3 465</td>
<td>4 420</td>
<td>4 870</td>
<td>6 300</td>
<td>7 200</td>
<td>8 400</td>
<td>9 200</td>
</tr>
<tr>
<td>H3.H</td>
<td></td>
<td>2 295</td>
<td>2 625</td>
<td>3 475</td>
<td>3 875</td>
<td>4 560</td>
<td>5 030</td>
<td>6 700</td>
<td>8 100</td>
<td>9 100</td>
<td>9 800</td>
</tr>
<tr>
<td>H3.M</td>
<td></td>
<td>2 155</td>
<td>2 490</td>
<td>3 260</td>
<td>3 625</td>
<td>4 250</td>
<td>4 740</td>
<td>6 200</td>
<td>7 600</td>
<td>8 500</td>
<td>9 300</td>
</tr>
<tr>
<td>H4.H</td>
<td></td>
<td>2 390</td>
<td>2 730</td>
<td>3 635</td>
<td>3 965</td>
<td>4 680</td>
<td>5 185</td>
<td>6 800</td>
<td>8 200</td>
<td>9 200</td>
<td>9 900</td>
</tr>
<tr>
<td>H4.M</td>
<td></td>
<td>2 270</td>
<td>2 600</td>
<td>3 440</td>
<td>3 740</td>
<td>4 445</td>
<td>4 915</td>
<td>6 300</td>
<td>7 700</td>
<td>8 600</td>
<td>9 400</td>
</tr>
<tr>
<td>B2.H</td>
<td></td>
<td>2 450</td>
<td>2 825</td>
<td>3 990</td>
<td>4 345</td>
<td>5 620</td>
<td>6 150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>B2.M</td>
<td></td>
<td>2 350</td>
<td>2 725</td>
<td>3 795</td>
<td>4 160</td>
<td>5 320</td>
<td>5 860</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B3.H</td>
<td></td>
<td>2 380</td>
<td>2 750</td>
<td>3 730</td>
<td>3 955</td>
<td>4 990</td>
<td>5 495</td>
<td>7 000</td>
<td>8 100</td>
<td>9 200</td>
<td>9 900</td>
</tr>
</tbody>
</table>
Refer to the following tables for the total weights (approximate values, in kg) of the gear units with auxiliary drive (maintenance drive) (Page 159):

Table B-3 Weights

<table>
<thead>
<tr>
<th>Type</th>
<th>Gear unit size</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3.H</td>
<td></td>
<td>262</td>
<td>377</td>
<td>427</td>
<td>630</td>
<td>710</td>
<td>1 015</td>
<td>1 135</td>
<td>1 595</td>
<td>1 860</td>
</tr>
<tr>
<td>B3.H</td>
<td></td>
<td>272</td>
<td>392</td>
<td>447</td>
<td>655</td>
<td>740</td>
<td>1 055</td>
<td>1 185</td>
<td>1 665</td>
<td>1 940</td>
</tr>
</tbody>
</table>

Refer to the following tables for the total weights (approximate values, in kg) of the gear units with auxiliary drive (load drive) (Page 159):

Table B-5 Weights

<table>
<thead>
<tr>
<th>Type</th>
<th>Gear unit size</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3.H</td>
<td></td>
<td>285</td>
<td>432</td>
<td>482</td>
<td>670</td>
<td>750</td>
<td>1 090</td>
<td>1 210</td>
<td>1 775</td>
<td>2 040</td>
</tr>
<tr>
<td>B3.H</td>
<td></td>
<td>295</td>
<td>447</td>
<td>502</td>
<td>695</td>
<td>780</td>
<td>1 130</td>
<td>1 260</td>
<td>1 845</td>
<td>2 120</td>
</tr>
</tbody>
</table>

B.5 Oil quantities

The oil quantity required is specified on the rating plate attached to the gear unit.
Refer to the following tables for the oil quantities (approximate values, in litres) for a gear unit in horizontal mounting position with rotary shaft sealing rings and taconite seals.

Table B-7 Oil quantities

<table>
<thead>
<tr>
<th>Type</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>H1SH</td>
<td>2.5</td>
</tr>
<tr>
<td>H2.H</td>
<td>-</td>
</tr>
<tr>
<td>H2.M</td>
<td>-</td>
</tr>
<tr>
<td>H3.H</td>
<td>-</td>
</tr>
<tr>
<td>H3.M</td>
<td>-</td>
</tr>
<tr>
<td>H4.H</td>
<td>-</td>
</tr>
<tr>
<td>H4.M</td>
<td>-</td>
</tr>
<tr>
<td>B2.H</td>
<td>3.5</td>
</tr>
<tr>
<td>B2.M</td>
<td>-</td>
</tr>
<tr>
<td>B3.H</td>
<td>-</td>
</tr>
<tr>
<td>B3.M</td>
<td>-</td>
</tr>
<tr>
<td>B4.H</td>
<td>-</td>
</tr>
<tr>
<td>B4.M</td>
<td>-</td>
</tr>
<tr>
<td>T3.H</td>
<td>-</td>
</tr>
<tr>
<td>T3.M</td>
<td>-</td>
</tr>
</tbody>
</table>

Table B-8 Oil quantities

<table>
<thead>
<tr>
<th>Type</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13</td>
</tr>
<tr>
<td>H1SH</td>
<td>175</td>
</tr>
<tr>
<td>H2.M</td>
<td>110</td>
</tr>
<tr>
<td>H3.H</td>
<td>160</td>
</tr>
<tr>
<td>H3.M</td>
<td>125</td>
</tr>
<tr>
<td>H4.H</td>
<td>130</td>
</tr>
<tr>
<td>H4.M</td>
<td>120</td>
</tr>
<tr>
<td>B2.H</td>
<td>140</td>
</tr>
<tr>
<td>B2.M</td>
<td>120</td>
</tr>
<tr>
<td>B3.H</td>
<td>130</td>
</tr>
<tr>
<td>B3.M</td>
<td>110</td>
</tr>
<tr>
<td>B4.H</td>
<td>145</td>
</tr>
<tr>
<td>B4.M</td>
<td>120</td>
</tr>
<tr>
<td>T3.H</td>
<td>-</td>
</tr>
<tr>
<td>T3.M</td>
<td>-</td>
</tr>
</tbody>
</table>
Refer to the following table for the oil quantities (approximate values, in litres) for a gear unit in horizontal mounting position with labyrinth sealing rings.

Table B-9 Oil quantities

<table>
<thead>
<tr>
<th>Type</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>H1SH</td>
<td>5.5</td>
</tr>
<tr>
<td>H2SH</td>
<td>4.5</td>
</tr>
<tr>
<td>H2PH</td>
<td>-</td>
</tr>
</tbody>
</table>

Refer to the following tables for the additional oil quantities (approximate values, in litres) for the intermediate flange when the auxiliary drive is installed.

Table B-10 Oil quantities

<table>
<thead>
<tr>
<th>Type</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3.H, T3.H</td>
<td>4</td>
</tr>
</tbody>
</table>
<pre><code> | 1 | 2 | 2 | 5 | 5 | 5 | 6 | 12 | 12 |
</code></pre>

Table B-11 Oil quantities

<table>
<thead>
<tr>
<th>Type</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13</td>
</tr>
<tr>
<td>B3.H</td>
<td>15</td>
</tr>
</tbody>
</table>

The auxiliary gear unit is filled with oil before it is shipped from the factory.

Further information

You can find additional information about the auxiliary drive in the auxiliary drive operating instructions in the complete documentation for the gear unit.

B.6 Enveloping surface sound pressure level

The gear unit has an enveloping surface sound pressure level at a distance of 1 m away, which can be taken from the following table.

The measurement is performed using the sound-intensity method according to DIN EN ISO 9614 Part 2.

The workplace of operating personnel is defined as the area on the measuring surface at a distance of 1 m around the gear unit and in the vicinity where persons may be present.

The sound pressure level applies to a gear unit in the warm condition at a drive speed \(n_1 \) and output power \(P_2 \) according to the rating plate, for measurements carried out on a Siemens test bench. If several values are given, then the highest speed and power values apply.
The enveloping surface sound pressure level includes any mounted lubrication units. With outgoing and incoming pipes, the flange is considered to be the interface.

The sound pressure levels listed in the table were obtained based on statistical evaluations carried out by our Quality Control department. With statistical certainty, it can be assumed that the gear unit complies with these sound pressure levels.

Refer to the following tables for the enveloping surface sound pressure level L_{pA} in dB(A) for bevel helical gear units with fan.

Table B-12 Enveloping surface sound pressure level

<table>
<thead>
<tr>
<th>Type</th>
<th>i_n</th>
<th>n_r in rpm</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 - 8</td>
<td>1500</td>
<td>71 72 73 76 79 81 83 84 85 87 88 89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>66 66 67 71 73 74 77 78 79 80 82 83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td><60 60 61 64 66 67 70 71 72 73 75 76</td>
</tr>
<tr>
<td></td>
<td>9 - 14</td>
<td>1500</td>
<td>68 69 70 73 75 76 78 81 82 83 84 85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>61 62 63 67 68 70 73 74 75 77 79 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td><60 60 <60 61 62 64 66 67 68 70 72 73</td>
</tr>
<tr>
<td></td>
<td>16 - 22.4</td>
<td>1500</td>
<td>65 66 67 71 74 76 78 79 80 81 83 84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td><60 <60 60 64 67 68 70 72 73 74 78 79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td><60 <60 <60 61 63 65 67 68 69 71 72</td>
</tr>
<tr>
<td>B3</td>
<td>12.5 - 31.5</td>
<td>1500</td>
<td>- - 69 72 75 77 79 80 81 82 83 85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>- - 62 65 68 69 71 72 73 74 77 78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>- - <60 <60 63 64 66 68 69 70 71 73</td>
</tr>
<tr>
<td></td>
<td>35.5 - 56</td>
<td>1500</td>
<td>- - 67 69 72 73 74 75 77 79 82 84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>- - <60 63 65 66 67 69 71 72 73 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>- - <60 <60 <60 <60 62 64 65 67 69 70</td>
</tr>
<tr>
<td></td>
<td>63 - 90</td>
<td>1500</td>
<td>- - 66 68 70 71 73 74 76 78 81 83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>- - <60 61 63 64 66 68 69 71 73 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>- - <60 <60 <60 <60 61 63 64 66 67 68</td>
</tr>
</tbody>
</table>

Table B-13 Enveloping surface sound pressure level

<table>
<thead>
<tr>
<th>Type</th>
<th>i_n</th>
<th>n_r in rpm</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 - 8</td>
<td>1500</td>
<td>91 92 94 - - - - - -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>84 85 87 89 90 - - - - - -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>77 78 81 82 83 85 - - - - - -</td>
</tr>
<tr>
<td></td>
<td>9 - 14</td>
<td>1500</td>
<td>86 87 88 90 - - - - - -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>81 82 83 84 86 87 - - - - - -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>74 75 77 78 79 80 - - - - - -</td>
</tr>
<tr>
<td></td>
<td>16 - 22.4</td>
<td>1500</td>
<td>87 88 89 90 - - - - - -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>80 81 82 83 84 84 - - - - - -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>73 73 74 74 75 76 - - - - - -</td>
</tr>
</tbody>
</table>
Refer to the following tables for the enveloping surface sound pressure level L_{pa} in dB(A) for bevel helical gear units without fan.

Table B-14 Enveloping surface sound pressure level

<table>
<thead>
<tr>
<th>Type</th>
<th>i_h</th>
<th>n_r in rpm</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>B3</td>
<td>12.5 - 31.5</td>
<td>1500</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>35.5 - 56</td>
<td>1500</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>63 - 90</td>
<td>1500</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>70</td>
</tr>
</tbody>
</table>

Table B-14 Enveloping surface sound pressure level

<table>
<thead>
<tr>
<th>Type</th>
<th>i_h</th>
<th>n_r in rpm</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>B2</td>
<td>5 - 8</td>
<td>1500</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750 <60</td>
<td><60</td>
</tr>
<tr>
<td></td>
<td>9 - 14</td>
<td>1500</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000 <60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750 <60</td>
<td><60</td>
</tr>
<tr>
<td></td>
<td>16 - 22.4</td>
<td>1500</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000 <60</td>
<td><60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750 <60</td>
<td><60</td>
</tr>
<tr>
<td>B3</td>
<td>12.5 - 31.5</td>
<td>1500</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>35.5 - 56</td>
<td>1500</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>63 - 90</td>
<td>1500</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>-</td>
</tr>
</tbody>
</table>
Technical data

B.6 Enveloping surface sound pressure level

Table B-15 Enveloping surface sound pressure level

<table>
<thead>
<tr>
<th>Type</th>
<th>(i_n)</th>
<th>(n_i) in rpm</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>B4</td>
<td>80 - 125</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140 - 224</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 - 400</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
</tbody>
</table>
Refer to the following tables for the enveloping surface sound pressure level L_{PA} in dB(A) for helical gear units with fan.

Table B-16 Enveloping surface sound pressure level

<table>
<thead>
<tr>
<th>Type</th>
<th>i_n</th>
<th>n_i in rpm</th>
<th>Gear unit size</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>1.25</td>
<td>76 76 81 84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>67 72 75 78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.24</td>
<td>73 79 82 84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>64 70 72 75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.56</td>
<td>70 77 81 83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>65 71 75 77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>66 68 69 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>66 68 69 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.2</td>
<td>76 77 79 80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>68 70 72 73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.28</td>
<td>71 73 75 77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>65 68 70 71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.4</td>
<td>71 72 75 77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>65 66 69 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40.63</td>
<td>70 71 73 74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>64 65 67 68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>71.112</td>
<td>70 72 72 75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>66 68 68 66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>71.112</td>
<td>70 70 72 72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>64 64 65 66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>71.112</td>
<td>70 70 72 72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>64 64 65 66</td>
<td></td>
</tr>
</tbody>
</table>

Technical data
B.6 Enveloping surface sound pressure level
Technical data
B.6 Enveloping surface sound pressure level

Table B-17 Enveloping surface sound pressure level

<table>
<thead>
<tr>
<th>Type</th>
<th>(i_n)</th>
<th>(n,) in rpm</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>H1</td>
<td>1.25 -2</td>
<td>1500</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>2.24 -3.55</td>
<td>1500</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>4 - 5.6</td>
<td>1500</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>77</td>
</tr>
<tr>
<td>H2</td>
<td>6.3 -10</td>
<td>1500</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>11.2 -16</td>
<td>1500</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>18 -28</td>
<td>1500</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>75</td>
</tr>
<tr>
<td>H3</td>
<td>22.4 -35.5</td>
<td>1500</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>40 - 63</td>
<td>1500</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>71 -112</td>
<td>1500</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>68</td>
</tr>
</tbody>
</table>
B.6 Enveloping surface sound pressure level

Refer to the following tables for the enveloping surface sound pressure level L_{pa} in dB(A) for helical gear units without fan.

<table>
<thead>
<tr>
<th>Type</th>
<th>i_n</th>
<th>n_i in rpm</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>H1</td>
<td>1.25</td>
<td>1500</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>2.24</td>
<td>1500</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>4.56</td>
<td>1500</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>60</td>
</tr>
<tr>
<td>H2</td>
<td>6.3</td>
<td>1500</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11.2</td>
<td>1500</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>18.1</td>
<td>1500</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>-</td>
</tr>
<tr>
<td>H3</td>
<td>22.4</td>
<td>1500</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>35.5</td>
<td>1500</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>71.1</td>
<td>1500</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>-</td>
</tr>
<tr>
<td>H4</td>
<td>100</td>
<td>1500</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>1500</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>1500</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>-</td>
</tr>
</tbody>
</table>
Technical data

B.6 Enveloping surface sound pressure level

Table B-19 Enveloping surface sound pressure level

<table>
<thead>
<tr>
<th>Type</th>
<th>(n_m)</th>
<th>(n_r) in rpm</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>H1</td>
<td>1.25 - 2</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.24 - 3.55</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 - 5.6</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>6.3 - 10</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.2 - 16</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 - 28</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>22.4 - 3.5</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.5 - 63</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>71 - 112</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>100 - 140</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>160 - 250</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>280 - 450</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
<tr>
<td></td>
<td><60</td>
<td><60</td>
<td></td>
</tr>
</tbody>
</table>
Glossary

CAVEX
CAVEX is an assembly and sales company for worm gear sets, worm gear units and drive solutions.

CSFW
Type of CAVEX helical worm unit, where the flange is defined as the output.

DU bushing
Designation for a type of plain bearing.

ED
Duty cycle

HPG
High Precision Gears

MIL-spec connector
An MIL-spec connector is a circular connector used for military, aeronautic and industrial applications.

PAO
Poly-alpha-olefin is a synthetic paraffin and naphthenic base oil.

PG/PAG
Polyglycol is a synthetic, common water soluble polymer-based base oil.

ZAPEX coupling
A ZAPEX coupling is a torsionally rigid gear coupling manufactured by Siemens AG.
Index

A
Air guide cover, 43
Air-oil cooler, 46, 47
Attachment points, 73
Auxiliary drive
 Checking, 138
 Checking the speed monitoring, 141
 Commissioning, 126
 Filling the overrunning clutch with oil, 138

B
Backstop, 40
 Checking the friction linings, 136
 Commissioning, 126
 filling with oil, 136
 Principle of operation, 39
Bearing monitoring
 Acceleration sensor, 57
 Connecting, 117
 Resistance thermometer, 56
 Shock-pulse transducer, 56

C
Coarse filter
 Cleaning, 140
Coloured markings, 16
Contact, 149
Cooling, 42
Cooling coil
 Commissioning, 127
 Cooling water flow rate, 45
 Design, 45
 Principle of operation, 44
Copyright, 14
Coupling, 51
Customer Services, 149

D
Danger of explosion, 20
Directions of rotation, 23
Disclaimer, 13
Disposal, 151
Documentary landscape, 14
Double change-over filter
 Cleaning, 140

E
Environmental protection, 151
Equipment features, 25
Eye bolts, 67

F
Fan, 43
Fastening bolts
 Bolt connection class, 120
 Bolts, 119
 Checking for tightness, 142
 Mating threads, 119
 Preload force, 120
 Tightening procedure, 120
 Tightening torque, 120
Fault, 142
Fault rectification, 143
Final work, 122

G
Gear unit designs, 23
Gear unit equipment, 26, 29
Gear unit housing, 25
Gear unit markings, 16
General inspection of the gear unit, 142

H
Heating
 Commissioning, 128
 Design, 53
 Function, 52
 Heating elements, 52
 Temperature monitor, 53

I
Interval, 134
Irregularities in operation, 131
L
Labyrinth seal, 34
Lateral pulling, 67
Lubricant, 14
Lubrication point, 26

M
Maintenance activities, 134
Maintenance information, 133
Maintenance schedule, 134
Measures
during commissioning, 129
Prior to commissioning, 125
Mounting position, 73

N
Note about assembly, 73

O
Oil, 14
Oil filter, 33, 50
Oil level indicator, 53
Oil supply, 30
Oil supply system, 31, 32, 46, 47, 48, 49, 50
Commissioning, 128
Oil supply variants, 30
Oil temperature
Checking, 136
Oil temperature monitoring, 55
Operating data
Compliance with, 131
Oil, 131
Ordering spare parts, 149, 153
Output shaft versions, 24

P
Preservation
Interior preservation through oil filling, 71
Pressure lubrication, 31
Protective equipment, 18
Pump, 33, 50

R
Rating plate, 157
Example of type and size, 158
Reactivating, 22
Resistance thermometer, 55
Connecting, 117
Rolling-contact bearings
Measure temperature, 142
Measuring the vibration levels, 141
Rotary shaft sealing ring, 34

S
Safety rules, 15
Scope of delivery, 65
Servicing activities, 134
Shaft bearings, 33
Shaft seal, 33
Shaft-mounted gear unit
Assembly, 92, 99, 105
Auxiliary plate, 97
Axial locking, 95
Dismantling, 95
End plate, 96, 97
Hydraulic pulling equipment, 97
Shear pulling, 67
Shipping documents, 65
Shrink disk
Checking, 139
Slipping torque, 40
Splash lubrication, 30

T
Tacolab seal, 37, 38
Taconite seal, 35
Taking the unit out of service, 132
Technical data, 157
Temperature monitor
Connecting, 117
Torque limiting backstop, 40, 42
Transport information, 65
Transport symbols, 66
Troubleshooting, 142
Types of danger, 18
Index

U
Unpacking, 74
Used oil, 151
Using the gear unit, 21

W
Warning symbols, 17
Water-oil cooler, 48, 49